Suppr超能文献

一种用于构建多个分布族的新型灵活广义族。

A new flexible generalized family for constructing many families of distributions.

作者信息

Tahir M H, Hussain M Adnan, Cordeiro Gauss M

机构信息

Department of Statistics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.

Department of Statistics, Federal University of Pernambuco, Recife, Brazil.

出版信息

J Appl Stat. 2021 Jan 20;49(7):1615-1635. doi: 10.1080/02664763.2021.1874891. eCollection 2022.

Abstract

We propose a (NFGF) for constructing many families of distributions. The importance of the NFGF is that any baseline distribution can be chosen and it does not involve any additional parameters. Some useful statistical properties of the NFGF are determined such as a linear representation for the family density, analytical shapes of the density and hazard rate, random variable generation, moments and generating function. Further, the structural properties of a special model named the (NFKw) distribution, are investigated, and the model parameters are estimated by maximum-likelihood method. A simulation study is carried out to assess the performance of the estimates. The usefulness of the NFKw model is proved empirically by means of three real-life data sets. In fact, the two-parameter NFKw model performs better than three-parameter transmuted-Kumaraswamy, three-parameter exponentiated-Kumaraswamy and the well-known two-parameter Kumaraswamy models.

摘要

我们提出了一种用于构建多个分布族的(NFGF)。NFGF的重要性在于可以选择任何基线分布,并且它不涉及任何额外参数。确定了NFGF的一些有用统计特性,例如族密度的线性表示、密度和危险率的解析形状、随机变量生成、矩和生成函数。此外,研究了一个名为(NFKw)分布的特殊模型的结构特性,并通过最大似然法估计模型参数。进行了一项模拟研究以评估估计的性能。通过三个实际数据集从经验上证明了NFKw模型的有用性。事实上,两参数NFKw模型比三参数变换后的库马拉斯瓦米模型、三参数指数化库马拉斯瓦米模型和著名的两参数库马拉斯瓦米模型表现更好。

相似文献

1
A new flexible generalized family for constructing many families of distributions.
J Appl Stat. 2021 Jan 20;49(7):1615-1635. doi: 10.1080/02664763.2021.1874891. eCollection 2022.
2
A competitive family to the Beta and Kumaraswamy generators: Properties, Regressions and Applications.
An Acad Bras Cienc. 2022 Jul 18;94(2):e20201972. doi: 10.1590/0001-3765202220201972. eCollection 2022.
3
Parameter induction in continuous univariate distributions: Well-established G families.
An Acad Bras Cienc. 2015 Apr-Jun;87(2):539-68. doi: 10.1590/0001-3765201520140299.
4
New defective models based on the Kumaraswamy family of distributions with application to cancer data sets.
Stat Methods Med Res. 2017 Aug;26(4):1737-1755. doi: 10.1177/0962280215587976. Epub 2015 Jun 19.
5
On the Extended Generalized Inverted Kumaraswamy Distribution.
Comput Intell Neurosci. 2022 Feb 17;2022:1612959. doi: 10.1155/2022/1612959. eCollection 2022.
6
Kumaraswamy log-logistic Weibull distribution: model, theory and application to lifetime and survival data.
Heliyon. 2019 Jan 21;5(1):e01144. doi: 10.1016/j.heliyon.2019.e01144. eCollection 2019 Jan.
7
The exponentiated generalized power series: Family of distributions: theory, properties and applications.
Heliyon. 2020 Aug 24;6(8):e04653. doi: 10.1016/j.heliyon.2020.e04653. eCollection 2020 Aug.
8
The Exponentiated Power Generalized Weibull: Properties and Applications.
An Acad Bras Cienc. 2018 Jul-Sep;90(3):2553-2577. doi: 10.1590/0001-3765201820170423.
9
A Flexible Reduced Logarithmic- Family of Distributions with Biomedical Analysis.
Comput Math Methods Med. 2020 Feb 20;2020:4373595. doi: 10.1155/2020/4373595. eCollection 2020.
10
The modified beta transmuted family of distributions with applications using the exponential distribution.
PLoS One. 2021 Nov 18;16(11):e0258512. doi: 10.1371/journal.pone.0258512. eCollection 2021.

引用本文的文献

1
A new asymmetric extended family: Properties and estimation methods with actuarial applications.
PLoS One. 2022 Oct 6;17(10):e0275001. doi: 10.1371/journal.pone.0275001. eCollection 2022.
2
Comparative study of artificial neural network versus parametric method in COVID-19 data analysis.
Results Phys. 2022 Jul;38:105613. doi: 10.1016/j.rinp.2022.105613. Epub 2022 May 16.

本文引用的文献

1
Parameter induction in continuous univariate distributions: Well-established G families.
An Acad Bras Cienc. 2015 Apr-Jun;87(2):539-68. doi: 10.1590/0001-3765201520140299.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验