Tahir M H, Hussain M Adnan, Cordeiro Gauss M
Department of Statistics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
Department of Statistics, Federal University of Pernambuco, Recife, Brazil.
J Appl Stat. 2021 Jan 20;49(7):1615-1635. doi: 10.1080/02664763.2021.1874891. eCollection 2022.
We propose a (NFGF) for constructing many families of distributions. The importance of the NFGF is that any baseline distribution can be chosen and it does not involve any additional parameters. Some useful statistical properties of the NFGF are determined such as a linear representation for the family density, analytical shapes of the density and hazard rate, random variable generation, moments and generating function. Further, the structural properties of a special model named the (NFKw) distribution, are investigated, and the model parameters are estimated by maximum-likelihood method. A simulation study is carried out to assess the performance of the estimates. The usefulness of the NFKw model is proved empirically by means of three real-life data sets. In fact, the two-parameter NFKw model performs better than three-parameter transmuted-Kumaraswamy, three-parameter exponentiated-Kumaraswamy and the well-known two-parameter Kumaraswamy models.
我们提出了一种用于构建多个分布族的(NFGF)。NFGF的重要性在于可以选择任何基线分布,并且它不涉及任何额外参数。确定了NFGF的一些有用统计特性,例如族密度的线性表示、密度和危险率的解析形状、随机变量生成、矩和生成函数。此外,研究了一个名为(NFKw)分布的特殊模型的结构特性,并通过最大似然法估计模型参数。进行了一项模拟研究以评估估计的性能。通过三个实际数据集从经验上证明了NFKw模型的有用性。事实上,两参数NFKw模型比三参数变换后的库马拉斯瓦米模型、三参数指数化库马拉斯瓦米模型和著名的两参数库马拉斯瓦米模型表现更好。