Suppr超能文献

选择具有高基础代谢率的老鼠进化出了更大的肠道,但线粒体效率没有提高。

Mice selected for a high basal metabolic rate evolved larger guts but not more efficient mitochondria.

机构信息

Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.

Univ Lyon, Université Claude Bernard Lyon 1, UMR 5023 LEHNA, CNRS, ENTPE, Villeurbanne, France.

出版信息

Proc Biol Sci. 2022 Jul 13;289(1978):20220719. doi: 10.1098/rspb.2022.0719.

Abstract

Intra-specific variation in both the basal metabolic rate (BMR) and mitochondrial efficiency (the amount of ATP produced per unit of oxygen consumed) has profound evolutionary and ecological consequences. However, the functional mechanisms responsible for this variation are not fully understood. Mitochondrial efficiency is negatively correlated with BMR at the interspecific level but it is positively correlated with performance capacity at the intra-specific level. This discrepancy is surprising, as theories explaining the evolution of endothermy assume a positive correlation between BMR and performance capacity. Here, we quantified mitochondrial oxidative phosphorylation activity and efficiency in two lines of laboratory mice divergently selected for either high (H-BMR) or low (L-BMR) levels of BMR. H-BMR mice had larger livers and kidneys (organs that are important predictors of BMR). H-BMR mice also showed higher oxidative phosphorylation activity in liver mitochondria but this difference can be hypothesized to be a direct effect of selection only if the heritability of this trait is low. However, mitochondrial efficiency in all studied organs did not differ between the two lines. We conclude that the rapid evolution of BMR can reflect changes in organ size rather than mitochondrial properties, and does not need to be accompanied obligatorily by changes in mitochondrial efficiency.

摘要

种内变异在基础代谢率(BMR)和线粒体效率(每单位耗氧量产生的 ATP 量)方面具有深远的进化和生态后果。然而,导致这种变异的功能机制尚未完全了解。线粒体效率在种间水平上与 BMR 呈负相关,但在种内水平上与性能能力呈正相关。这种差异令人惊讶,因为解释恒温动物进化的理论假设 BMR 与性能能力之间存在正相关。在这里,我们在两条实验室小鼠品系中量化了线粒体氧化磷酸化活性和效率,这两条品系分别为高(H-BMR)或低(L-BMR)水平的 BMR 进行了选择。H-BMR 小鼠的肝脏和肾脏较大(这些器官是 BMR 的重要预测因子)。H-BMR 小鼠的肝脏线粒体中也显示出更高的氧化磷酸化活性,但如果该性状的遗传力较低,则可以假设这种差异只是选择的直接结果。然而,两条品系之间的所有研究器官的线粒体效率没有差异。我们得出结论,BMR 的快速进化可以反映器官大小的变化,而不是线粒体特性的变化,并且不一定需要伴随着线粒体效率的变化。

相似文献

1
Mice selected for a high basal metabolic rate evolved larger guts but not more efficient mitochondria.
Proc Biol Sci. 2022 Jul 13;289(1978):20220719. doi: 10.1098/rspb.2022.0719.
2
Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice.
Physiol Biochem Zool. 2004 Nov-Dec;77(6):890-9. doi: 10.1086/425190.
3
High basal metabolic rate does not elevate oxidative stress during reproduction in laboratory mice.
J Exp Biol. 2014 May 1;217(Pt 9):1504-9. doi: 10.1242/jeb.100073. Epub 2014 Jan 16.
4
Mice divergently selected for high and low basal metabolic rates evolved different cell size and organ mass.
J Evol Biol. 2014 Mar;27(3):478-87. doi: 10.1111/jeb.12306. Epub 2014 Jan 13.
5
Larger guts and faster growth in mice selected for high basal metabolic rate.
Biol Lett. 2021 Oct;17(10):20210244. doi: 10.1098/rsbl.2021.0244. Epub 2021 Oct 13.
7
Locomotor activity of mice divergently selected for basal metabolic rate: a test of hypotheses on the evolution of endothermy.
J Evol Biol. 2009 Jun;22(6):1212-20. doi: 10.1111/j.1420-9101.2009.01734.x. Epub 2009 Apr 1.
8
Effect of calorie restriction on spontaneous physical activity and body mass in mice divergently selected for basal metabolic rate (BMR).
Physiol Behav. 2016 Jul 1;161:116-122. doi: 10.1016/j.physbeh.2016.04.022. Epub 2016 Apr 14.
9
Effect of dietary restriction on immune response of laboratory mice divergently selected for basal metabolic rate.
Physiol Biochem Zool. 2012 Jan-Feb;85(1):51-61. doi: 10.1086/663696. Epub 2011 Nov 30.
10
A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate.
Heredity (Edinb). 2015 Apr;114(4):419-27. doi: 10.1038/hdy.2014.122. Epub 2015 Jan 21.

本文引用的文献

1
Brain size, gut size and cognitive abilities: the energy trade-offs tested in artificial selection experiment.
Proc Biol Sci. 2022 Apr 13;289(1972):20212747. doi: 10.1098/rspb.2021.2747.
3
Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution.
Trends Ecol Evol. 2021 Apr;36(4):321-332. doi: 10.1016/j.tree.2020.12.006. Epub 2021 Jan 10.
5
Coevolution of body size and metabolic rate in vertebrates: a life-history perspective.
Biol Rev Camb Philos Soc. 2020 Oct;95(5):1393-1417. doi: 10.1111/brv.12615. Epub 2020 Jun 10.
6
Mitochondrial physiology varies with parity and body mass in the laboratory mouse (Mus musculus).
J Comp Physiol B. 2020 Jul;190(4):465-477. doi: 10.1007/s00360-020-01285-2. Epub 2020 Jun 6.
8
Linking the mitochondrial genotype to phenotype: a complex endeavour.
Philos Trans R Soc Lond B Biol Sci. 2020 Jan 20;375(1790):20190169. doi: 10.1098/rstb.2019.0169. Epub 2019 Dec 2.
9
Plastic but repeatable: rapid adjustments of mitochondrial function and density during reproduction in a wild bird species.
Biol Lett. 2019 Nov 29;15(11):20190536. doi: 10.1098/rsbl.2019.0536. Epub 2019 Nov 13.
10
Allometry of mitochondrial efficiency is set by metabolic intensity.
Proc Biol Sci. 2019 Sep 25;286(1911):20191693. doi: 10.1098/rspb.2019.1693.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验