Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
School of Biological Sciences, University of Nebraska, Lincoln, NE, USA.
Proc Biol Sci. 2022 Jul 13;289(1978):20212800. doi: 10.1098/rspb.2021.2800.
Hosts can avoid parasites (and pathogens) by reducing social contact, but such isolation may carry costs, e.g. increased vulnerability to predators. Thus, many predator-host-parasite systems confront hosts with a trade-off between predation and parasitism. Parasites, meanwhile, evolve higher virulence in response to increased host sociality and consequently, increased multiple infections. How does predation shift coevolution of host behaviour and parasite virulence? What if predators are selective, i.e. predators disproportionately capture the sickest hosts? We answer these questions with an eco-coevolutionary model parametrized for a Trinidadian guppy- spp. system. Here, increased predation drives host coevolution of higher grouping, which selects for higher virulence. Additionally, higher predator selectivity drives the contact rate higher and virulence lower. Finally, we show how predation and selectivity can have very different impacts on host density and prevalence depending on whether hosts or parasites evolve, or both. For example, higher predator selectivity led to lower prevalence with no evolution or only parasite evolution but higher prevalence with host evolution or coevolution. These findings inform our understanding of diverse systems in which host behavioural responses to predation may lead to increased prevalence and virulence of parasites.
宿主可以通过减少社交接触来避免寄生虫(和病原体),但这种隔离可能会带来代价,例如增加对捕食者的脆弱性。因此,许多捕食者-宿主-寄生虫系统使宿主面临捕食和寄生之间的权衡。与此同时,寄生虫会针对宿主社交性的增加和随之而来的多重感染而进化出更高的毒力。捕食如何改变宿主行为和寄生虫毒力的共同进化?如果捕食者具有选择性,即捕食者不成比例地捕捉最生病的宿主,情况会如何?我们使用针对特立尼达孔雀鱼系统的生态共同进化模型来回答这些问题。在这里,增加的捕食压力推动了宿主更高的群体形成的共同进化,从而选择了更高的毒力。此外,更高的捕食者选择性会使接触率更高,毒力更低。最后,我们展示了捕食和选择性如何根据宿主或寄生虫是否进化,或者两者都进化,对宿主密度和流行率产生非常不同的影响。例如,更高的捕食者选择性导致没有进化或只有寄生虫进化时的流行率降低,但宿主进化或共同进化时的流行率更高。这些发现为我们理解宿主对捕食的行为反应可能导致寄生虫流行率和毒力增加的各种系统提供了信息。