Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, São Paulo, Brazil.
J Phys Chem B. 2022 Aug 4;126(30):5695-5705. doi: 10.1021/acs.jpcb.2c03277. Epub 2022 Jul 20.
Deep eutectic solvents (DESs) are similar to ionic liquids (IL) in terms of physicochemical properties and technical uses. In ILs, far-infrared (FIR) spectroscopy has been utilized to reveal ionic interactions and even to produce a signature of the strengthening of the cation-anion hydrogen bond. However, for the situation of the DES, where the mixing of a salt and a molecular species makes the interplay between multiple intermolecular interactions even more complex, a full investigation of FIR spectra is still absent. In this work, the FIR spectrum of the DES, often referred to as ethaline, which is a 1:2 mixture of choline chloride and ethylene glycol, is calculated using classical molecular dynamics (MD) simulations and compared to experimental data. To explore the induced dipole effect on the computed FIR spectrum, MD simulations were run with both nonpolarizable and polarizable models. The calculation satisfactorily reproduces the position of the peak at ∼110 cm and the bandwidth seen in the experimental FIR spectrum of ethaline. The MD simulations show that the charge current is the most important contributor to the FIR spectrum, but the cross-correlation between the charge current and dipole reorientation also plays a role in the polarizable model. The dynamics of the chloride-ethylene glycol correlation span a wide frequency range, with a maximum at ∼150 cm, but it participates as a direct mechanism only in the charge current-dipole reorientation cross-term. Anion correlations, whose dynamics are regulated via correlation with both ethylene glycol and choline, make the most significant contribution to the charge current mechanism. The MD simulations were also utilized to investigate the effect on the FIR spectrum of adding water to the DES and switching to a 1:1 composition.
深共熔溶剂 (DESs) 在物理化学性质和技术用途方面与离子液体 (ILs) 相似。在 ILs 中,远红外 (FIR) 光谱已被用于揭示离子相互作用,甚至产生阳离子-阴离子氢键增强的特征。然而,对于 DES 的情况,盐和分子物种的混合使得多种分子间相互作用的相互作用更加复杂,因此对 FIR 光谱的全面研究仍然缺失。在这项工作中,使用经典分子动力学 (MD) 模拟计算了通常称为乙腈的 DES 的 FIR 光谱,乙腈是氯化胆碱和乙二醇 1:2 的混合物,并将其与实验数据进行了比较。为了探索诱导偶极子对计算 FIR 光谱的影响,使用非极化和极化模型进行了 MD 模拟。计算结果很好地再现了实验 FIR 光谱中乙腈在约 110cm 处的峰的位置和带宽。MD 模拟表明,电荷电流是 FIR 光谱的最重要贡献者,但电荷电流与偶极子重取向之间的交叉相关也在极化模型中起作用。氯化物-乙二醇相关的动力学跨越很宽的频率范围,在约 150cm 处达到最大值,但它仅作为直接机制参与电荷电流-偶极子重取向交叉项。阴离子相关的动力学通过与乙二醇和胆碱的相关来调节,它们对电荷电流机制的贡献最大。MD 模拟还用于研究向 DES 中添加水并切换到 1:1 组成对 FIR 光谱的影响。