LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, 1081 HV, Amsterdam, The Netherlands.
Commun Biol. 2022 Jul 20;5(1):720. doi: 10.1038/s42003-022-03683-4.
To survive, Caenorhabditis elegans depends on sensing soluble chemicals with transmembrane proteins (TPs) in the cilia of its chemosensory neurons. Cilia rely on intraflagellar transport (IFT) to facilitate the distribution of cargo, such as TPs, along the ciliary axoneme. Here, we use fluorescence imaging of living worms and perform single-molecule tracking experiments to elucidate the dynamics underlying the ciliary distribution of the sensory TP OCR-2. Quantitative analysis reveals that the ciliary distribution of OCR-2 depends on an intricate interplay between transport modes that depends on the specific location in the cilium: in dendrite and transition zone, directed transport is predominant. Along the cilium motion is mostly due to normal diffusion together with a small fraction of directed transport, while at the ciliary tip subdiffusion dominates. These insights in the role of IFT and diffusion in ciliary dynamics contribute to a deeper understanding of ciliary signal transduction and chemosensing.
为了生存,秀丽隐杆线虫依赖于其化学感觉神经元纤毛中的跨膜蛋白 (TP) 来感知可溶性化学物质。纤毛依赖于内纤毛运输 (IFT) 来促进货物(如 TP)沿着纤毛轴突的分布。在这里,我们使用活体蠕虫的荧光成像并进行单分子跟踪实验,以阐明感觉 TP OCR-2 纤毛分布的基础动力学。定量分析表明,OCR-2 的纤毛分布取决于运输模式之间的复杂相互作用,这取决于纤毛中的特定位置:在树突和过渡区,定向运输占主导地位。沿着纤毛运动主要是由于正常扩散以及一小部分定向运输,而在纤毛尖端亚扩散占主导地位。IFT 和扩散在纤毛动力学中的作用的这些见解有助于深入了解纤毛信号转导和化学感觉。