Suppr超能文献

探寻天王星卫星内部的地下海洋

In Search of Subsurface Oceans Within the Uranian Moons.

作者信息

Cochrane C J, Vance S D, Nordheim T A, Styczinski M J, Masters A, Regoli L H

机构信息

Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA.

University of Washington Seattle WA USA.

出版信息

J Geophys Res Planets. 2021 Dec;126(12):e2021JE006956. doi: 10.1029/2021JE006956. Epub 2021 Dec 1.

Abstract

The mission to Jupiter discovered magnetic signatures associated with hidden subsurface oceans at the moons Europa and Callisto using the phenomenon of magnetic induction. These induced magnetic fields originate from electrically conductive layers within the moons and are driven by Jupiter's strong time-varying magnetic field. The ice giants and their moons are also ideal laboratories for magnetic induction studies. Both Uranus and Neptune have a strongly tilted magnetic axis with respect to their spin axis, creating a dynamic and strongly variable magnetic field environment at the orbits of their major moons. Although visited the ice giants in the 1980s, it did not pass close enough to any of the moons to detect magnetic induction signatures. However, revealed that some of these moons exhibit surface features that hint at recent geologically activity, possibly associated with subsurface oceans. Future missions to the ice giants may therefore be capable of discovering subsurface oceans, thereby adding to the family of known "ocean worlds" in our Solar System. Here, we assess magnetic induction as a technique for investigating subsurface oceans within the major moons of Uranus. Furthermore, we establish the ability to distinguish induction responses created by different interior characteristics that tie into the induction response: ocean thickness, conductivity and depth, and ionospheric conductance. The results reported here demonstrate the possibility of single-pass ocean detection and constrained characterization within the moons of Miranda, Ariel, and Umbriel, and provide guidance for magnetometer selection and trajectory design for future missions to Uranus.

摘要

前往木星的任务利用磁感应现象发现了与木卫二和木卫四隐藏的地下海洋相关的磁特征。这些感应磁场源自卫星内部的导电层,并由木星强烈的时变磁场驱动。冰巨行星及其卫星也是磁感应研究的理想实验室。天王星和海王星的磁轴相对于其自转轴都有很大的倾斜,在其主要卫星的轨道上创造了一个动态且变化强烈的磁场环境。尽管在20世纪80年代探访过冰巨行星,但探测器距离任何一颗卫星都不够近,无法探测到磁感应特征。然而,探测结果显示其中一些卫星呈现出暗示近期地质活动的表面特征,这可能与地下海洋有关。因此,未来前往冰巨行星的任务或许能够发现地下海洋,从而扩充我们太阳系中已知“海洋世界”的家族。在此处,我们评估将磁感应作为一种探测天王星主要卫星地下海洋的技术。此外,我们确定了区分由不同内部特征产生的感应响应的能力,这些内部特征与感应响应相关:海洋厚度、电导率和深度,以及电离层电导率。此处报告的结果证明了在米兰达、艾瑞尔和乌姆柏里厄尔卫星上单次探测海洋并进行有限特征描述的可能性,并为未来前往天王星的任务中磁力计的选择和轨道设计提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c0/9285391/b0aafb0e7d95/JGRE-126-0-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验