Suppr超能文献

通过贝叶斯框架识别搁浅塑料的海洋来源:应用于荷兰西南部

Identifying Marine Sources of Beached Plastics Through a Bayesian Framework: Application to Southwest Netherlands.

作者信息

van Duinen Bram, Kaandorp Mikael L A, van Sebille Erik

机构信息

Institute for Marine and Atmospheric Research Utrecht Utrecht University Utrecht The Netherlands.

出版信息

Geophys Res Lett. 2022 Feb 28;49(4):e2021GL097214. doi: 10.1029/2021GL097214. Epub 2022 Feb 15.

Abstract

Beaches are thought to be a large reservoir for marine plastics. To protect vulnerable beaches, it is advantageous to have information on the sources of this plastic. Here, we develop a universally applicable Bayesian framework to map sources of plastic arriving on a specific beach. In this framework, we combine Lagrangian backtracking simulations of drifting particles with estimates of plastic input from coastlines, rivers and fisheries. The advantage over traditional Lagrangian simulations is that the Bayesian framework can consider information on known sources, and thus facilitates spatiotemporal source attribution for plastic arriving at the specified beach. We show that the main sources for our target beach in southwest Netherlands are the east coast of the UK, the Dutch coast, the English Channel (fisheries) and the Thames, Seine, Rhine and Trieux (rivers). We also show that floating time is a major uncertainty in source attribution using backtracking.

摘要

海滩被认为是海洋塑料的一个巨大储存库。为了保护脆弱的海滩,了解这些塑料的来源是很有必要的。在此,我们开发了一个通用的贝叶斯框架,用于绘制到达特定海滩的塑料来源图。在这个框架中,我们将漂移颗粒的拉格朗日回溯模拟与来自海岸线、河流和渔业的塑料输入估计相结合。与传统的拉格朗日模拟相比,贝叶斯框架的优势在于它可以考虑已知来源的信息,从而便于对到达指定海滩的塑料进行时空来源归因。我们表明,荷兰西南部目标海滩的主要来源是英国东海岸、荷兰海岸、英吉利海峡(渔业)以及泰晤士河、塞纳河、莱茵河和特里厄河(河流)。我们还表明,使用回溯法进行来源归因时,漂浮时间是一个主要的不确定性因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be1a/9285463/6fdc491b94e4/GRL-49-0-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验