Wu Junru, Gao Ziyao, Wang Yao, Yang Xu, Liu Qi, Zhou Dong, Wang Xianshu, Kang Feiyu, Li Baohua
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
Nanomicro Lett. 2022 Jul 21;14(1):147. doi: 10.1007/s40820-022-00896-4.
Through tailoring interfacial chemistry, electrolyte engineering is a facile yet effective strategy for high-performance lithium (Li) metal batteries, where the solvation structure is critical for interfacial chemistry. Herein, the effect of electrostatic interaction on regulating an anion-rich solvation is firstly proposed. The moderate electrostatic interaction between anion and solvent promotes anion to enter the solvation sheath, inducing stable solid electrolyte interphase with fast Li transport kinetics on the anode. This as-designed electrolyte exhibits excellent compatibility with Li metal anode (a Li deposition/stripping Coulombic efficiency of 99.3%) and high-voltage LiCoO cathode. Consequently, the 50 μm-thin Li||high-loading LiCoO cells achieve significantly improved cycling performance under stringent conditions of high voltage over 4.5 V, lean electrolyte, and wide temperature range (- 20 to 60 °C). This work inspires a groundbreaking strategy to manipulate the solvation structure through regulating the interactions of solvent and anion for high-performance Li metal batteries.
通过定制界面化学,电解质工程是实现高性能锂金属电池的一种简便而有效的策略,其中溶剂化结构对界面化学至关重要。在此,首次提出了静电相互作用对调节富阴离子溶剂化的影响。阴离子与溶剂之间适度的静电相互作用促使阴离子进入溶剂化鞘层,在阳极诱导出具有快速锂传输动力学的稳定固体电解质界面。这种设计的电解质与锂金属阳极具有出色的兼容性(锂沉积/剥离库仑效率为99.3%)以及与高压LiCoO阴极具有良好的兼容性。因此,50μm厚的锂||高负载LiCoO电池在超过4.5V的高电压、贫电解质和宽温度范围(-20至60°C)的严苛条件下实现了显著改善的循环性能。这项工作启发了一种开创性的策略,即通过调节溶剂和阴离子的相互作用来操纵溶剂化结构,以实现高性能锂金属电池。