Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
PLoS One. 2022 Jul 21;17(7):e0271542. doi: 10.1371/journal.pone.0271542. eCollection 2022.
In this paper, we propose a new estimation method in estimating optimal dynamic treatment regimes. The quadratic inference functions in myopic regret-regression (QIF-MRr) can be used to estimate the parameters of the mean response at each visit, conditional on previous states and actions. Singularity issues may arise during computation when estimating the parameters in ODTR using QIF-MRr due to multicollinearity. Hence, the ridge penalty was introduced in rQIF-MRr to tackle the issues. A simulation study and an application to anticoagulation dataset were conducted to investigate the model's performance in parameter estimation. The results show that estimations using rQIF-MRr are more efficient than the QIF-MRr.
在本文中,我们提出了一种新的估计最优动态治疗策略的方法。在近视后悔回归(QIF-MRr)中的二次推断函数可用于在给定先前状态和动作的情况下,估计每次访问时的平均响应的参数。由于共线性,在使用 QIF-MRr 估计 ODTR 中的参数时,可能会出现奇异问题。因此,在 rQIF-MRr 中引入了岭惩罚来解决这个问题。进行了一项模拟研究和一项抗凝数据集的应用,以研究该模型在参数估计中的性能。结果表明,rQIF-MRr 的估计比 QIF-MRr 更有效。