Suppr超能文献

一种综合方法预测精神药理学治疗的重性抑郁障碍患者的体重增加和治疗反应:一项队列研究方案。

A comprehensive approach to predicting weight gain and therapy response in psychopharmacologically treated major depressed patients: A cohort study protocol.

机构信息

Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany.

出版信息

PLoS One. 2022 Jul 21;17(7):e0271793. doi: 10.1371/journal.pone.0271793. eCollection 2022.

Abstract

BACKGROUND

A subgroup of patients with Major Depressive Disorder shows signs of low-grade inflammation and metabolic abberances, while antidepressants can induce weight gain and subsequent metabolic disorders, and lacking antidepressant response is associated with inflammation.

OBJECTIVES

A comprehensive investigation of patient phenotypes and their predictive capability for weight gain and treatment response after psychotropic treatment will be performed. The following factors will be analyzed: inflammatory and metabolic markers, gut microbiome composition, lifestyle indicators (eating behavior, physical activity, chronotype, patient characteristics (childhood adversity among others), and polygenic risk scores.

METHODS

Psychiatric inpatients with at least moderate Major Depressive Disorder will be enrolled in a prospective, observational, naturalistic, monocentric study using stratified sampling. Ethical approval was obtained. Primary outcomes at 4 weeks will be percent weight change and symptom score change on the Montgomery Asberg Depression Rating Scale. Both outcomes will also be binarized into clinically relevant outcomes at 5% weight gain and 50% symptom score reduction. Predictors for weight gain and treatment response will be tested using multiple hierachical regression for continuous outcomes, and multiple binary logistic regression for binarized outcomes. Psychotropic premedication, current medication, eating behavior, baseline BMI, age, and sex will be included as covariates. Further, a comprehensive analysis will be carried out using machine learning. Polygenic risk scores will be added in a second step to estimate the additional variance explained by genetic markers. Sample size calculation yielded a total amount of N = 171 subjects.

DISCUSSION

Patient and physician expectancies regarding the primary outcomes and non-random sampling may affect internal validity and external validity, respectively. Through the prospective and naturalistic design, results will gain relevance to clinical practice. Examining the predictive value of patient profiles for weight gain and treatment response during pharmacotherapy will allow for targeted adjustments before and concomitantly to the start of treatment.

摘要

背景

有一小部分重度抑郁症患者表现出低度炎症和代谢异常的迹象,而抗抑郁药可能会导致体重增加和随后的代谢紊乱,并且缺乏抗抑郁反应与炎症有关。

目的

将对患者表型及其对精神药物治疗后体重增加和治疗反应的预测能力进行综合研究。将分析以下因素:炎症和代谢标志物、肠道微生物组组成、生活方式指标(饮食行为、身体活动、昼夜节律、患者特征(如童年逆境)和多基因风险评分。

方法

将至少中度重度抑郁症的住院精神病患者纳入一项前瞻性、观察性、自然主义、单中心研究中,采用分层抽样。已获得伦理批准。4 周时的主要结局是体重变化百分比和蒙哥马利抑郁评定量表的症状评分变化。这两个结局也将被二值化为体重增加 5%和症状评分降低 50%的临床相关结局。使用多元层次回归分析连续结局,使用多元二项逻辑回归分析二值结局,测试体重增加和治疗反应的预测因子。将精神药物预处理、当前药物、饮食行为、基线 BMI、年龄和性别作为协变量。此外,将使用机器学习进行综合分析。将多基因风险评分添加到第二步中,以估计遗传标记物解释的额外方差。样本量计算得出总样本量 N = 171 例。

讨论

患者和医生对主要结局的期望以及非随机抽样可能分别影响内部有效性和外部有效性。通过前瞻性和自然主义设计,结果将与临床实践相关。检查患者特征对药物治疗期间体重增加和治疗反应的预测价值,可以在治疗开始前和同时进行有针对性的调整。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/107f/9302848/22a94a4037c3/pone.0271793.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验