Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea; Asen Company, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
Biosens Bioelectron. 2022 Nov 1;215:114555. doi: 10.1016/j.bios.2022.114555. Epub 2022 Jul 16.
Monitoring biosignals at the skin interface is necessary to suppress the potential for decubitus ulcers in immobile patients confined to bed. We develop conformally contacted, disposable, and breathable fabric-based electronic devices to detect skin impedance, applied pressure, and temperature, simultaneously. Based on the experimental evaluation of the multifunctional sensors, a combination of robust AgNW electrodes, soft ionogel capacitive pressure sensor, and resistive temperature sensor on fabric provides alarmed the initiation of early-stage decubitus ulcers without signal distortion under the external stimulus. For clinical verification, an animal model is established with a pair of magnets to mimic a human decubitus ulcers model in murine in vivo. The evidence of pressure-induced ischemic injury is confirmed with the naked eye and histological and molecular biomarker analyses. Our multifunctional integrated sensor detects the critical time for early-stage decubitus ulcer, establishing a robust correlation with the biophysical parameters of skin ischemia and integrity, including temperature and impedance.
监测皮肤界面的生物信号对于抑制卧床不动的易患压疮患者的压疮风险是必要的。我们开发了贴合、一次性和透气的织物基电子设备,可同时检测皮肤阻抗、压力和温度。基于多功能传感器的实验评估,在织物上结合了坚固的 AgNW 电极、柔软的离子凝胶电容压力传感器和电阻温度传感器,在外部刺激下提供报警,以在早期压疮发作时不会出现信号失真。为了临床验证,建立了一个动物模型,使用一对磁铁模拟人类压疮模型在体内的情况。通过肉眼观察、组织学和分子生物标志物分析证实了压力引起的缺血性损伤的证据。我们的多功能集成传感器检测到早期压疮的关键时间,与皮肤缺血和完整性的生物物理参数(包括温度和阻抗)建立了稳健的相关性。