Suppr超能文献

基于对比增强 T1 加权像的听神经鞘瘤快速生长相关危险因素的全肿瘤影像组学分析。

Whole Tumor Radiomics Analysis for Risk Factors Associated With Rapid Growth of Vestibular Schwannoma in Contrast-Enhanced T1-Weighted Images.

机构信息

Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan.

Department of Diagnostic Radiology, Kumamoto University Hospital, Kumamoto, Japan.

出版信息

World Neurosurg. 2022 Oct;166:e572-e582. doi: 10.1016/j.wneu.2022.07.058. Epub 2022 Jul 19.

Abstract

OBJECTIVE

To investigate the features associated with rapid growth of vestibular schwannoma using radiomics analysis on magnetic resonance imaging (MRI) together with clinical factors.

METHODS

From August 2005 to February 2019, 67 patients with vestibular schwannoma underwent contrast-enhanced T1-weighted MRI at least twice as part of their diagnosis. After excluding 3 cases with an extremely short follow-up period of 15 days or less, 64 patients were finally enrolled in this study. Ninety-three texture features were extracted from the tumor image data using 3D Slicer software (http://www.slicer.org/). We determined the texture features that significantly affected maximal tumor diameter growth of more than 2 mm/year using Random Forest and Bounty. We also analyzed age and tumor size as clinical factors. We calculated the areas under the curve (AUCs) using receiver operating characteristic analysis for prediction models using texture, clinical, and mixed factors by Random Forest and 5-fold cross-validation.

RESULTS

Two texture features, low minimum signal and high inverse difference moment normalized (Idmn), were significantly associated with rapid growth of vestibular schwannoma. The mixed model of texture features and clinical factors offered the highest AUC (0.69), followed by the pure texture (0.67), and pure clinical (0.63) models. The minimum signal was the most important variable followed by tumor size, Idmn, and age.

CONCLUSIONS

Our radiomics analysis found that texture features were significantly associated with the rapid growth of vestibular schwannoma in contrast-enhanced T1-weighted images. The mixed model offered a higher diagnostic performance than the pure texture or clinical models.

摘要

目的

利用磁共振成像(MRI)的放射组学分析结合临床因素,探讨听神经鞘瘤快速生长的相关特征。

方法

本研究回顾性分析 2005 年 8 月至 2019 年 2 月期间至少接受过 2 次增强 T1 加权 MRI 检查以明确诊断的 67 例听神经鞘瘤患者的资料。排除随访时间极短(<15 天)的 3 例患者后,最终共纳入 64 例患者。使用 3D Slicer 软件(http://www.slicer.org/)从肿瘤图像数据中提取 93 个纹理特征。采用随机森林(Random Forest)和 Bounty 法筛选出与肿瘤最大直径年增长率>2mm/年显著相关的纹理特征。同时分析年龄和肿瘤大小等临床因素。采用随机森林和 5 折交叉验证法,基于纹理、临床和混合因素构建预测模型,通过受试者工作特征曲线(receiver operating characteristic analysis,ROC)分析计算曲线下面积(area under the curve,AUC)。

结果

两个纹理特征(低最小信号和高逆差异矩归一化(Idmn))与听神经鞘瘤的快速生长显著相关。纹理特征与临床因素的混合模型具有最高的 AUC(0.69),其次是纯纹理模型(0.67)和纯临床模型(0.63)。最小信号是最重要的变量,其次是肿瘤大小、Idmn 和年龄。

结论

本研究的放射组学分析发现,增强 T1 加权 MRI 图像上的纹理特征与听神经鞘瘤的快速生长显著相关。与纯纹理或临床模型相比,混合模型具有更高的诊断性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验