Suppr超能文献

评估肿瘤微环境中放射组学特征的稳定性和判别能力:利用前庭神经鞘瘤的瘤周区域。

Assessing the stability and discriminative ability of radiomics features in the tumor microenvironment: Leveraging peri-tumoral regions in vestibular schwannoma.

机构信息

Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran.

Department of Physics, Jackson State University, Jackson, MS, USA; Merit Health Central, Department of Radiation Oncology,Gamma Knife Center, Jackson, MS, USA.

出版信息

Eur J Radiol. 2024 Sep;178:111654. doi: 10.1016/j.ejrad.2024.111654. Epub 2024 Jul 28.

Abstract

PURPOSE

The tumor microenvironment (TME) plays a crucial role in tumor progression and treatment response. Radiomics offers a non-invasive approach to studying the TME by extracting quantitative features from medical images. In this study, we present a novel approach to assess the stability and discriminative ability of radiomics features in the TME of vestibular schwannoma (VS).

METHODS

Magnetic Resonance Imaging (MRI) data from 242 VS patients were analyzed, including contrast-enhanced T1-weighted (ceT1) and high-resolution T2-weighted (hrT2) sequences. Radiomics features were extracted from concentric peri-tumoral regions of varying sizes. The intraclass correlation coefficient (ICC) was used to assess feature stability and discriminative ability, establishing quantile thresholds for ICCmin and ICCmax.

RESULTS

The identified thresholds for ICCmin and ICCmax were 0.45 and 0.72, respectively. Features were classified into four categories: stable and discriminative (S-D), stable and non-discriminative (S-ND), unstable and discriminative (US-D), and unstable and non-discriminative (US-ND). Different feature groups exhibited varying proportions of S-D features across ceT1 and hrT2 sequences. The similarity of S-D features between ceT1 and hrT2 sequences was evaluated using Jaccard's index, with a value of 0.78 for all feature groups which is ranging from 0.68 (intensity features) to 1.00 (Neighbouring Gray Tone Difference Matrix (NGTDM) features).

CONCLUSIONS

This study provides a framework for identifying stable and discriminative radiomics features in the TME, which could serve as potential biomarkers or predictors of patient outcomes, ultimately improving the management of VS patients.

摘要

目的

肿瘤微环境(TME)在肿瘤进展和治疗反应中起着至关重要的作用。放射组学通过从医学图像中提取定量特征,为研究 TME 提供了一种非侵入性的方法。在这项研究中,我们提出了一种新的方法来评估前庭神经鞘瘤(VS)TME 中放射组学特征的稳定性和区分能力。

方法

对 242 例 VS 患者的磁共振成像(MRI)数据进行分析,包括对比增强 T1 加权(ceT1)和高分辨率 T2 加权(hrT2)序列。从不同大小的同心瘤周区域提取放射组学特征。使用组内相关系数(ICC)评估特征的稳定性和区分能力,确定 ICCmin 和 ICCmax 的分位数阈值。

结果

确定的 ICCmin 和 ICCmax 阈值分别为 0.45 和 0.72。特征分为四类:稳定且有区分能力(S-D)、稳定但无区分能力(S-ND)、不稳定且有区分能力(US-D)和不稳定且无区分能力(US-ND)。不同的特征组在 ceT1 和 hrT2 序列上表现出不同比例的 S-D 特征。使用 Jaccard 指数评估 ceT1 和 hrT2 序列中 S-D 特征的相似性,所有特征组的 Jaccard 指数值为 0.78,范围从 0.68(强度特征)到 1.00(邻域灰度差矩阵(NGTDM)特征)。

结论

本研究提供了一种识别 TME 中稳定且有区分能力的放射组学特征的框架,这些特征可能成为患者预后的潜在生物标志物或预测因子,最终改善 VS 患者的管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验