Shim Sunggeun, Park Woon Bae, Han Jungmin, Lee Jinhyeok, Lee Byung Do, Lee Jin-Woong, Seo Jung Yong, Prabakar S J Richard, Han Su Cheol, Singh Satendra Pal, Hwang Chan-Cuk, Ahn Docheon, Han Sangil, Park Kyusung, Sohn Kee-Sun, Pyo Myoungho
Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea.
Department of Advanced Components and Materials Engineering, Sunchon National University, Chonnam, 57922, Republic of Korea.
Adv Sci (Weinh). 2022 Oct;9(28):e2201648. doi: 10.1002/advs.202201648. Epub 2022 Jul 21.
A tandem (two-step) particle swarm optimization (PSO) algorithm is implemented in the argyrodite-based multidimensional composition space for the discovery of an optimal argyrodite composition, i.e., with the highest ionic conductivity (7.78 mS cm ). To enhance the industrial adaptability, an elaborate pellet preparation procedure is not used. The optimal composition (Li PS Cl Br ) is fine-tuned to enhance its practical viability by incorporating oxygen in a stepwise manner. The final composition (Li PS O Cl Br ), which exhibits an ionic conductivity (σ ) of 6.70 mS cm and an activation barrier of 0.27 eV, is further characterized by analyzing both its moisture and electrochemical stability. Relative to the other compositions, the exposure of Li PS O Cl Br to a humid atmosphere results in the least amount of H S released and a negligible change in structure. The improvement in the interfacial stability between the Li(Ni Co Mn )O cathode and Li PS O Cl Br also results in greater specific capacity during fast charge/discharge. The structural and chemical features of Li PS Cl Br and Li PS O Cl Br argyrodites are characterized using synchrotron X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. This work presents a novel argyrodite composition with favorably balanced properties while providing broad insights into material discovery methodologies with applications for battery development.
在基于硫银锗矿的多维成分空间中实施了一种串联(两步)粒子群优化(PSO)算法,以发现最佳硫银锗矿成分,即具有最高离子电导率(7.78 mS cm)的成分。为提高工业适应性,未采用精细的造粒制备程序。通过逐步引入氧对最佳成分(Li PS Cl Br)进行微调,以提高其实际可行性。最终成分(Li PS O Cl Br)的离子电导率(σ)为6.70 mS cm,活化能垒为0.27 eV,通过分析其湿度和电化学稳定性对其进行了进一步表征。相对于其他成分,Li PS O Cl Br暴露在潮湿气氛中释放的H S量最少,结构变化可忽略不计。Li(Ni Co Mn)O正极与Li PS O Cl Br之间界面稳定性的提高也导致在快速充放电过程中具有更大的比容量。使用同步加速器X射线衍射、拉曼光谱和X射线光电子能谱对Li PS Cl Br和Li PS O Cl Br硫银锗矿的结构和化学特征进行了表征。这项工作提出了一种具有良好平衡性能的新型硫银锗矿成分,同时为电池开发应用的材料发现方法提供了广泛的见解。