Kazil Jan, Christensen Matthew W, Abel Steven J, Yamaguchi Takanobu, Feingold Graham
Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder Boulder CO USA.
National Oceanic and Atmospheric Administration Chemical Sciences Laboratory Boulder CO USA.
J Adv Model Earth Syst. 2021 Dec;13(12):e2021MS002664. doi: 10.1029/2021MS002664. Epub 2021 Nov 25.
An approach to drive Lagrangian large eddy simulation (LES) of boundary layer clouds with reanalysis data is presented and evaluated using satellite (Spinning Enhanced Visible and Infrared Imager, SEVIRI) and aircraft (Cloud-Aerosol-Radiation Interactions and Forcing, CLARIFY) measurements. The simulations follow trajectories of the boundary layer flow. They track the formation and evolution of a pocket of open cells (POC) underneath a biomass burning aerosol layer in the free troposphere. The simulations reproduce the evolution of observed stratocumulus cloud morphology, cloud optical depth, and cloud drop effective radius, and capture the timing of the cloud state transition from closed to open cells seen in the satellite imagery on the three considered trajectories. They reproduce a biomass burning aerosol layer identified by the in-situ aircraft measurements above the inversion of the POC. Entrainment of aerosol from the biomass burning layer into the POC is limited to the extent of having no impact on cloud- or boundary layer properties, in agreement with the CLARIFY observations. The two-moment bin microphysics scheme used in the simulations reproduces the in-situ cloud microphysical properties reasonably well. A two-moment bulk microphysics scheme reproduces the satellite observations in the non-precipitating closed-cell state, but overestimates liquid water path and cloud optical depth in the precipitating open-cell state due to insufficient surface precipitation. A boundary layer cold and dry bias occurring in LES can be counteracted by reducing the grid aspect ratio and by tightening the large scale wind speed nudging towards the surface.
本文提出了一种利用再分析数据驱动边界层云的拉格朗日大涡模拟(LES)的方法,并使用卫星(旋转增强可见光和红外成像仪,SEVIRI)和飞机(云-气溶胶-辐射相互作用与强迫,CLARIFY)测量数据对其进行了评估。模拟沿着边界层气流的轨迹进行。它们追踪了自由对流层中生物质燃烧气溶胶层下方一个开放细胞气团(POC)的形成和演变。模拟再现了观测到的层积云形态、云光学厚度和云滴有效半径的演变,并捕捉到了在三条考虑的轨迹上卫星图像中云状态从封闭细胞向开放细胞转变的时间。它们再现了POC逆温层上方由飞机原位测量确定的生物质燃烧气溶胶层。生物质燃烧层中的气溶胶向POC的卷入程度有限,对云或边界层特性没有影响,这与CLARIFY观测结果一致。模拟中使用的双矩箱式微物理方案相当好地再现了原位云微物理特性。双矩整体微物理方案在非降水封闭细胞状态下再现了卫星观测结果,但由于表面降水不足,在降水开放细胞状态下高估了液态水路径和云光学厚度。LES中出现的边界层冷偏差和干偏差可以通过减小网格长宽比以及加强向地面的大尺度风速 nudging 来抵消。