Suppr超能文献

基于密集卫星观测和稀疏现场观测的海洋混合层深度概率机器学习估计

Probabilistic Machine Learning Estimation of Ocean Mixed Layer Depth From Dense Satellite and Sparse In Situ Observations.

作者信息

Foster Dallas, Gagne David John, Whitt Daniel B

机构信息

Department of Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge MA USA.

National Center for Atmospheric Research Boulder CO USA.

出版信息

J Adv Model Earth Syst. 2021 Dec;13(12):e2021MS002474. doi: 10.1029/2021MS002474. Epub 2021 Nov 30.

Abstract

The ocean mixed layer plays an important role in the coupling between the upper ocean and atmosphere across a wide range of time scales. Estimation of the variability of the ocean mixed layer is therefore important for atmosphere-ocean prediction and analysis. The increasing coverage of in situ Argo profile data allows for an increasingly accurate analysis of the mixed layer depth (MLD) variability associated with deviations from the seasonal climatology. However, sampling rates are not sufficient to fully resolve subseasonal ( day) MLD variability. Yet, many multivariate observations-based analyses include implicit modeled subseasonal MLD variability. One analysis method is optimal interpolation of in situ data, but the interior analysis can be improved by leveraging surface data with regression or variational approaches. Here, we demonstrate how machine learning methods and satellite sea surface temperature, salinity, and height facilitate MLD estimation in a pilot study of two regions: the mid-latitude southern Indian and the eastern equatorial Pacific Oceans. We construct multiple machine learning architectures to produce weekly 1/2° gridded MLD anomaly fields (relative to a monthly climatology) with uncertainty estimates. We test multiple traditional and probabilistic machine learning techniques to compare both accuracy and probabilistic calibration. We validate our methodology by applying it to ocean model simulations. We find that incorporating sea surface data through a machine learning model improves the performance of spatiotemporal MLD variability estimation compared to optimal interpolation of Argo observations alone. These preliminary results are a promising first step for the application of machine learning to MLD prediction.

摘要

海洋混合层在广泛的时间尺度上对上层海洋与大气之间的耦合起着重要作用。因此,估计海洋混合层的变异性对于海气预测和分析至关重要。原位Argo剖面数据覆盖范围的增加,使得对与季节性气候偏差相关的混合层深度(MLD)变异性的分析越来越准确。然而,采样率不足以完全解析亚季节(天)MLD变异性。然而,许多基于多变量观测的分析包括隐含的模拟亚季节MLD变异性。一种分析方法是对原位数据进行最优插值,但通过回归或变分方法利用表面数据可以改进内部分析。在这里,我们展示了机器学习方法以及卫星海表面温度、盐度和高度如何在对两个区域(中纬度南印度洋和赤道东太平洋)的试点研究中促进MLD估计。我们构建了多种机器学习架构,以生成具有不确定性估计的每周1/2°网格化MLD异常场(相对于月度气候学)。我们测试了多种传统和概率机器学习技术,以比较准确性和概率校准。我们通过将我们的方法应用于海洋模型模拟来验证我们的方法。我们发现,与仅对Argo观测进行最优插值相比,通过机器学习模型纳入海表面数据可以提高时空MLD变异性估计的性能。这些初步结果是将机器学习应用于MLD预测的一个有前景的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d47/9286844/580cb95ce940/JAME-13-0-g013.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验