Carroll Dustin, Menemenlis Dimitris, Dutkiewicz Stephanie, Lauderdale Jonathan M, Adkins Jess F, Bowman Kevin W, Brix Holger, Fenty Ian, Gierach Michelle M, Hill Chris, Jahn Oliver, Landschützer Peter, Manizza Manfredi, Mazloff Matt R, Miller Charles E, Schimel David S, Verdy Ariane, Whitt Daniel B, Zhang Hong
Moss Landing Marine Laboratories San José State University Moss Landing CA USA.
Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA.
Global Biogeochem Cycles. 2022 Mar;36(3):e2021GB007162. doi: 10.1029/2021GB007162. Epub 2022 Mar 22.
The inventory and variability of oceanic dissolved inorganic carbon (DIC) is driven by the interplay of physical, chemical, and biological processes. Quantifying the spatiotemporal variability of these drivers is crucial for a mechanistic understanding of the ocean carbon sink and its future trajectory. Here, we use the Estimating the Circulation and Climate of the Ocean-Darwin ocean biogeochemistry state estimate to generate a global-ocean, data-constrained DIC budget and investigate how spatial and seasonal-to-interannual variability in three-dimensional circulation, air-sea CO flux, and biological processes have modulated the ocean sink for 1995-2018. Our results demonstrate substantial compensation between budget terms, resulting in distinct upper-ocean carbon regimes. For example, boundary current regions have strong contributions from vertical diffusion while equatorial regions exhibit compensation between upwelling and biological processes. When integrated across the full ocean depth, the 24-year DIC mass increase of 64 Pg C (2.7 Pg C year) primarily tracks the anthropogenic CO growth rate, with biological processes providing a small contribution of 2% (1.4 Pg C). In the upper 100 m, which stores roughly 13% (8.1 Pg C) of the global increase, we find that circulation provides the largest DIC gain (6.3 Pg C year) and biological processes are the largest loss (8.6 Pg C year). Interannual variability is dominated by vertical advection in equatorial regions, with the 1997-1998 El Niño-Southern Oscillation causing the largest year-to-year change in upper-ocean DIC (2.1 Pg C). Our results provide a novel, data-constrained framework for an improved mechanistic understanding of natural and anthropogenic perturbations to the ocean sink.
海洋溶解无机碳(DIC)的存量和变率受物理、化学和生物过程相互作用的驱动。量化这些驱动因素的时空变率对于从机制上理解海洋碳汇及其未来轨迹至关重要。在此,我们使用“海洋环流与气候估算-达尔文”海洋生物地球化学状态估算来生成一个全球海洋、数据约束的DIC收支,并研究1995 - 2018年期间三维环流、海气CO通量和生物过程的空间及季节到年际变率如何调节海洋碳汇。我们的结果表明收支项之间存在显著补偿,导致上层海洋出现不同的碳状态。例如,边界流区域垂直扩散贡献很大,而赤道区域上升流和生物过程之间存在补偿。当在整个海洋深度进行积分时,24年DIC质量增加64Pg C(2.7Pg C/年)主要跟踪人为CO的增长率,生物过程贡献较小,为2%(1.4Pg C)。在储存了全球增量约13%(8.1Pg C)的上层100m中,我们发现环流提供了最大的DIC增益(6.3Pg C/年),而生物过程是最大的损失(8.6Pg C/年)。年际变率在赤道区域以垂直平流为主,1997 - 1998年厄尔尼诺-南方涛动导致上层海洋DIC的年际变化最大(2.1Pg C)。我们的结果提供了一个新的、数据约束的框架,用于更好地从机制上理解对海洋碳汇的自然和人为扰动。