Suppr超能文献

利用多流域模型和遥感影像对高度调控的跨界流域进行径流预测

Streamflow Prediction in Highly Regulated, Transboundary Watersheds Using Multi-Basin Modeling and Remote Sensing Imagery.

作者信息

Du Tien L T, Lee Hyongki, Bui Duong D, Graham L Phil, Darby Stephen D, Pechlivanidis Ilias G, Leyland Julian, Biswas Nishan K, Choi Gyewoon, Batelaan Okke, Bui Thao T P, Do Son K, Tran Tinh V, Nguyen Hoa Thi, Hwang Euiho

机构信息

Department of Civil and Environmental Engineering University of Houston Houston TX USA.

Danang Institute for Socio-Economic Development Da Nang Vietnam.

出版信息

Water Resour Res. 2022 Mar;58(3):e2021WR031191. doi: 10.1029/2021WR031191. Epub 2022 Mar 24.

Abstract

Despite the potential of remote sensing for monitoring reservoir operation, few studies have investigated the extent to which reservoir releases can be inferred across different spatial and temporal scales. Through evaluating 21 reservoirs in the highly regulated Greater Mekong region, remote sensing imagery was found to be useful in estimating daily storage volumes for within-year and over-year reservoirs (correlation coefficients [CC] ≥ 0.9, normalized root mean squared error [NRMSE] ≤ 31%), but not for run-of-river reservoirs (CC < 0.4, 40% ≤ NRMSE ≤ 270%). Given a large gap in the number of reservoirs between global and local databases, the proposed framework can improve representation of existing reservoirs in the global reservoir database and thus human impacts in hydrological models. Adopting an Integrated Reservoir Operation Scheme within a multi-basin model was found to overcome the limitations of remote sensing and improve streamflow prediction at ungauged cascade reservoir systems where previous modeling approaches were unsuccessful. As a result, daily regulated streamflow was predicted competently across all types of reservoirs (median values of CC = 0.65, NRMSE = 8%, and Kling-Gupta efficiency [KGE] = 0.55) and downstream hydrological stations (median values of CC = 0.94, NRMSE = 8%, and KGE = 0.81). The findings are valuable for helping to understand the impacts of reservoirs and dams on streamflow and for developing more useful adaptation measures to extreme events in data sparse river basins.

摘要

尽管遥感技术在监测水库运行方面具有潜力,但很少有研究探讨在不同时空尺度上推断水库泄流量的程度。通过对高度调控的湄公河大区域内的21座水库进行评估,发现遥感影像对于估算年内和跨年水库的每日蓄水量很有用(相关系数[CC]≥0.9,归一化均方根误差[NRMSE]≤31%),但对于径流式水库则不然(CC<0.4,40%≤NRMSE≤270%)。鉴于全球和本地数据库中水库数量存在巨大差距,所提出的框架可以改善全球水库数据库中现有水库的代表性,从而改善水文模型中的人类影响。发现在多流域模型中采用综合水库运行方案可以克服遥感技术的局限性,并改善在以前建模方法不成功的无测站梯级水库系统中的径流预测。结果,能够很好地预测所有类型水库(CC中位数=0.65,NRMSE=8%,Kling-Gupta效率[KGE]=0.55)和下游水文站(CC中位数=0.94,NRMSE=8%,KGE=0.81)的每日调节径流。这些发现对于帮助理解水库和大坝对径流的影响以及制定更有效的适应数据稀疏流域极端事件的措施具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9e4/9286455/40d5f140af54/WRCR-58-0-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验