Suppr超能文献

半结晶液晶弹性体中的可编程形状变化

Programmable Shape Change in Semicrystalline Liquid Crystal Elastomers.

作者信息

Javed Mahjabeen, Corazao Tyler, Saed Mohand O, Ambulo Cedric P, Li Yuzhan, Kessler Michael R, Ware Taylor H

机构信息

Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States.

Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States.

出版信息

ACS Appl Mater Interfaces. 2022 Aug 3;14(30):35087-35096. doi: 10.1021/acsami.2c07533. Epub 2022 Jul 22.

Abstract

Liquid crystal elastomers (LCEs) are stimuli-responsive materials capable of reversible and programmable shape change in response to an environmental stimulus. Despite the highly responsive nature of these materials, the modest elastic modulus and blocking stress exhibited by these actuating materials can be limiting in some engineering applications. Here, we engineer a semicrystalline LCE, where the incorporation of semicrystallinity in a lightly cross-linked liquid crystalline network yields tough and highly responsive materials. Directed self-assembly can be employed to program director profiles through the thickness of the semicrystalline LCE. In short, we use the alignment of a liquid crystal monomer phase to pattern the anisotropy of a semicrystalline polymer network. Both the semicrystalline-liquid crystalline and liquid crystalline-isotropic phase transition temperatures provide controllable shape transformations. A planarly aligned sample's normalized dimension parallel to the nematic director decreases from 1 at room temperature to 0.42 at 250 °C. The introduction of the semicrystalline nature also enhances the mechanical properties exhibited by the semicrystalline LCE. Semicrystalline LCEs have a storage modulus of 390 MPa at room temperature, and monodomain samples are capable of generating a contractile stress of 2.7 MPa on heating from 25 to 50 °C, far below the nematic to isotropic transition temperature. The robust mechanical properties of this material combined with the high actuation strain can be leveraged for applications such as soft robotics and actuators capable of doing significant work.

摘要

液晶弹性体(LCEs)是能够响应环境刺激而发生可逆和可编程形状变化的刺激响应材料。尽管这些材料具有高度响应性,但这些驱动材料表现出的适度弹性模量和阻塞应力在某些工程应用中可能会受到限制。在此,我们设计了一种半结晶LCE,其中在轻度交联的液晶网络中引入半结晶性可产生坚韧且高响应性的材料。可以采用定向自组装来设定贯穿半结晶LCE厚度的指向矢分布。简而言之,我们利用液晶单体相的取向来构建半结晶聚合物网络的各向异性。半结晶 - 液晶和液晶 - 各向同性相变温度都能实现可控的形状转变。一个平面取向样品平行于向列指向矢的归一化尺寸在室温下为1,在250°C时降至0.42。半结晶性质的引入还增强了半结晶LCE表现出的机械性能。半结晶LCE在室温下的储能模量为390 MPa,单畴样品在从25°C加热到50°C时能够产生2.7 MPa的收缩应力,远低于向列相到各向同性相的转变温度。这种材料强大的机械性能与高驱动应变相结合,可用于软机器人技术和能够完成大量工作的致动器等应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验