Retout Maurice, Cornelio Benedetta, Bruylants Gilles, Jabin Ivan
Engineering of Molecular Nanosystems, Université Libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, 1050 Bruxelles, Belgium.
Laboratoire de Chimie Organique, Université Libre de Bruxelles (ULB), CP 160/06, 50 Avenue F.D. Roosevelt, 1050 Bruxelles, Belgium.
Langmuir. 2022 Aug 2;38(30):9301-9309. doi: 10.1021/acs.langmuir.2c01122. Epub 2022 Jul 22.
Gold nanoparticles (AuNPs) are currently intensively exploited in the biomedical field as they possess interesting chemical and optical properties. Although their synthesis is well-known, their controlled surface modification with defined densities of ligands such as peptides, DNA, or antibodies remains challenging and has generally to be optimized case by case. This is particularly true for applications like in vivo drug delivery that require AuNPs with multiple ligands, for example a targeting ligand and a drug in well-defined proportions. In this context, we aimed to develop a calixarene-modification strategy that would allow the controlled orthogonal conjugation of AuNPs, respectively, via amide bond formation and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). To do this, we synthesized a calix[4]arene-tetradiazonium salt bearing four PEG chains ended by an alkyne group () and, after optimization of its grafting on 20 nm AuNPs, we demonstrated that CuAAC can be used to conjugate an azide containing dye (N-cya7.5). It was observed that AuNPs coated with (AuNPs-) can be conjugated to approximately 600 N-cya7.5 that is much higher than the value obtained for AuNPs decorated with traditional thiolated PEG ligands terminated by an alkyne group. The control over the number of molecules conjugated via CuAAC was even possible by incorporating a non-functional calixarene () into the coating layer. We then combined with a calix[4]arene-tetradiazonium salt bearing four carboxyl groups () that allows conjugation of an amine (NH-cya7.5) containing dye. The conjugation potential of these bifunctional AuNPs-/ was quantified by UV-vis spectroscopy: AuNPs decorated with equal amount of and could be conjugated to approximately 350 NH-dyes and 300 N-dyes using successively amide bond formation and CuAAC, demonstrating the control over the orthogonal conjugation. Such nanoconstructs could benefit to anyone in the need of a controlled modification of AuNPs with two different molecules via two different chemistries.
金纳米颗粒(AuNPs)目前在生物医学领域得到广泛应用,因为它们具有有趣的化学和光学性质。尽管其合成方法广为人知,但用特定密度的配体(如肽、DNA或抗体)对其进行可控的表面修饰仍然具有挑战性,通常需要根据具体情况进行优化。对于体内药物递送等应用来说尤其如此,这类应用需要具有多种配体的金纳米颗粒,例如按明确比例存在的靶向配体和药物。在此背景下,我们旨在开发一种杯芳烃修饰策略,该策略能够分别通过酰胺键形成和铜(I)催化的叠氮化物 - 炔烃环加成反应(CuAAC)实现金纳米颗粒的可控正交共轭。为此,我们合成了一种带有四个末端为炔基的聚乙二醇链的杯[4]芳烃四重氮盐(),在优化其接枝到20纳米金纳米颗粒上的条件后,我们证明了CuAAC可用于共轭含叠氮化物的染料(N - cya7.5)。据观察,涂有(AuNPs - )的金纳米颗粒可以共轭大约600个N - cya7.5,这比用末端为炔基的传统硫醇化聚乙二醇配体修饰的金纳米颗粒所获得的值要高得多。通过在涂层中加入无功能的杯芳烃(),甚至可以控制通过CuAAC共轭的分子数量。然后,我们将与带有四个羧基的杯[4]芳烃四重氮盐()相结合,该盐能够共轭含胺(NH - cya7.5)的染料。通过紫外 - 可见光谱对这些双功能金纳米颗粒 - / 的共轭潜力进行了量化:用等量的和修饰的金纳米颗粒可以依次通过酰胺键形成和CuAAC分别共轭大约350个NH - 染料和300个N - 染料,这证明了对正交共轭的控制。这种纳米结构对于任何需要通过两种不同化学方法用两种不同分子对金纳米颗粒进行可控修饰的人都可能有益。