Xu Yuhao, Hu Huatian, Chen Wen, Suo Pengfei, Zhang Yuan, Zhang Shunping, Xu Hongxing
School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
ACS Nano. 2022 Aug 23;16(8):12711-12719. doi: 10.1021/acsnano.2c04478. Epub 2022 Jul 22.
In the picture of molecular cavity optomechanics, surface-enhanced Raman scattering (SERS) can be understood as molecular oscillators parametrically coupled to plasmonic nanocavities supporting an extremely localized optical field. This enables SERS from conventional fingerprint detection toward quantum nanotechnologies associated with, e.g., frequency upconversion and optomechanically induced transparency. Here, we study a phononic cavity optomechanical system consisting of a monolayer MoS placed inside a plasmonic nanogap, where the coherent phonon-plasmon interaction involves the collective oscillation from tens of thousands of unit cells of the MoS crystal. We observe the selective nonlinear SERS enhancement of the system as determined by the laser-plasmon detuning, suggesting the dynamic backaction modification of the phonon populations. Anomalous superlinear power dependence of a second-order Raman-inactive phonon mode with respect to the first-order phonons is also observed, indicating the distinctive properties of the phononic nanodevice compared with the molecular system. Our results promote the development of robust phononic optomechanical nanocavities to further explore the related quantum correlation and nonlinear effects including parametric instabilities.
在分子腔光力学图景中,表面增强拉曼散射(SERS)可理解为分子振荡器与支持极强局域光场的等离子体纳米腔发生参量耦合。这使得SERS从传统的指纹检测迈向与频率上转换和光机械诱导透明等相关的量子纳米技术。在此,我们研究了一个声子腔光机械系统,该系统由置于等离子体纳米间隙内的单层MoS₂组成,其中相干声子 - 等离子体相互作用涉及MoS₂晶体数万个晶胞的集体振荡。我们观察到由激光 - 等离子体失谐决定的系统选择性非线性SERS增强,这表明声子布居的动态反作用修正。还观察到二阶拉曼非活性声子模式相对于一阶声子的异常超线性功率依赖关系,这表明与分子系统相比,声子纳米器件具有独特性质。我们的结果推动了稳健的声子光机械纳米腔的发展,以进一步探索相关的量子关联和非线性效应,包括参量不稳定性。