Pawbake Amit, Pelini Thomas, Delhomme Alex, Romanin Davide, Vaclavkova Diana, Martinez Gerard, Calandra Matteo, Measson Marie-Aude, Veis Martin, Potemski Marek, Orlita Milan, Faugeras Clement
LNCMI, UPR 3228, CNRS, EMFL, Université Grenoble Alpes, 38000 Grenoble, France.
Sorbonne Université, CNRS, Institut des Nanosciences de Paris, UMR 7588, F-75252 Paris, France.
ACS Nano. 2022 Aug 23;16(8):12656-12665. doi: 10.1021/acsnano.2c04286. Epub 2022 Jul 22.
Magnetic layered materials have emerged recently as promising systems to introduce magnetism in structures based on two-dimensional (2D) materials and to investigate exotic magnetic ground states in the 2D limit. In this work, we apply high hydrostatic pressures up to ≈ 8.7 GPa to the bulk layered antiferromagnet FePS to tune the collective lattice excitations (phonons) in resonance with magnetic excitations (magnons). Close to = 4 GPa, the magnon-phonon resonance is achieved, and the strong coupling between these collective modes leads to the formation of new quasiparticles, the magnon-polarons, evidenced in our low-temperature Raman scattering experiments by a particular avoided crossing behavior between the phonon and the doubly degenerate antiferromagnetic magnon. At the pressure-induced magnon-phonon resonance, three distinct coupled modes emerge. As it is mainly defined by intralayer properties, we show that the energy of the magnon is nearly pressure-independent. We additionally apply high magnetic fields up to = 30 T to fully identify and characterize the magnon excitations and to explore the different magnon-polaron regimes for which the phonon has an energy lower than, equal to, or higher than the magnon energy. The description of our experimental data requires introducing a phonon-phonon coupling not taken into account in actual calculations.
磁性层状材料最近已成为一种很有前景的体系,可在基于二维(2D)材料的结构中引入磁性,并在二维极限下研究奇异的磁性基态。在这项工作中,我们对块状层状反铁磁体FePS施加高达≈8.7 GPa的高静水压力,以调节集体晶格激发(声子)与磁激发(磁振子)发生共振。接近4 GPa时,实现了磁振子 - 声子共振,这些集体模式之间的强耦合导致形成新的准粒子,即磁振子极化子,在我们的低温拉曼散射实验中,通过声子与双重简并反铁磁磁振子之间特定的避免交叉行为得以证明。在压力诱导的磁振子 - 声子共振下,出现了三种不同的耦合模式。由于它主要由层内性质决定,我们表明磁振子的能量几乎与压力无关。我们还施加高达30 T的高磁场,以全面识别和表征磁振子激发,并探索声子能量低于、等于或高于磁振子能量的不同磁振子极化子区域。对我们实验数据的描述需要引入实际计算中未考虑的声子 - 声子耦合。