Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA.
Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA.
Adv Drug Deliv Rev. 2022 Sep;188:114461. doi: 10.1016/j.addr.2022.114461. Epub 2022 Jul 20.
This article reviews recent developments in computational modeling of dry powder inhalers (DPIs). DPIs deliver drug formulations (sometimes blended with larger carrier particles) to a patient's lungs via inhalation. Inhaler design is complicated by the need for maximum aerosolization efficiency, which is favored by high levels of turbulence near the mouthpiece, with low extrathoracic depositional loss, which requires low turbulence levels near the mouth-throat region. In this article, we review the physical processes contributing to aerosolization and subsequent dispersion and deposition. We assess the performance characteristics of DPIs using existing simulation techniques and offer a perspective on how such simulations can be improved to capture the physical processes occurring over a wide range of length- and timescales more efficiently.
本文综述了干粉吸入器(DPIs)计算建模的最新进展。DPIs 通过吸入将药物制剂(有时与较大的载体颗粒混合)递送至患者肺部。由于需要最大的气溶胶化效率,吸入器的设计变得复杂,这有利于在吸嘴附近产生高水平的湍流,同时要求在口咽区域附近产生低水平的胸腔外沉积损失,以减少低水平的湍流。在本文中,我们回顾了促成气溶胶化以及随后的分散和沉积的物理过程。我们使用现有的模拟技术评估 DPIs 的性能特征,并提供了一种观点,即如何改进这些模拟技术,以更有效地捕捉在广泛的长度和时间尺度上发生的物理过程。