Suppr超能文献

基于特征信任的分组 PBFT 共识算法研究。

Research on PBFT consensus algorithm for grouping based on feature trust.

机构信息

School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China.

出版信息

Sci Rep. 2022 Jul 22;12(1):12515. doi: 10.1038/s41598-022-15282-8.

Abstract

The consensus mechanism is the core of the blockchain system, which plays an important role in the performance and security of the blockchain system . The Practical Byzantine Fault Tolerance (PBFT) algorithm is a widely used consensus algorithm, but the PBFT algorithm also suffers from high consensus latency, low throughput and performance. In this paper, we propose a grouped PBFT consensus algorithm (GPBFT) based on feature trust. First, the algorithm evaluates the trust degree of nodes in the transaction process through the EigenTrust trust model, and uses the trust degree of nodes as the basis for electing master nodes and proxy nodes. Then, the algorithm divides the nodes in the blockchain system into multiple groups, and the consensus within each independent group does not affect the other groups, which greatly reduces the communication overhead of the consensus process when the number of nodes in the system is large. Finally, we demonstrate through theoretical and experimental analysis that the GPBFT algorithm has a significant improvement in security and performance.

摘要

共识机制是区块链系统的核心,在区块链系统的性能和安全性方面发挥着重要作用。实用拜占庭容错(PBFT)算法是一种广泛使用的共识算法,但 PBFT 算法也存在共识延迟高、吞吐量和性能低的问题。在本文中,我们提出了一种基于特征信任的分组 PBFT 共识算法(GPBFT)。首先,该算法通过 EigenTrust 信任模型在交易过程中评估节点的信任度,并使用节点的信任度作为选举主节点和代理节点的依据。然后,该算法将区块链系统中的节点分为多个组,每个独立组内的共识不会影响其他组,当系统中的节点数量较大时,极大地降低了共识过程的通信开销。最后,我们通过理论和实验分析证明,GPBFT 算法在安全性和性能方面都有显著的提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fbe/9307629/6f62bb1107ac/41598_2022_15282_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验