Suppr超能文献

字典学习压缩感知重建:加速回波平面 J 分辨波谱成像在前列腺癌中的初步验证。

Dictionary learning compressed sensing reconstruction: pilot validation of accelerated echo planar J-resolved spectroscopic imaging in prostate cancer.

机构信息

Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA.

Urology, University of California Los Angeles, Los Angeles, CA, USA.

出版信息

MAGMA. 2022 Aug;35(4):667-682. doi: 10.1007/s10334-022-01029-z. Epub 2022 Jul 23.

Abstract

OBJECTIVES

This study aimed at developing dictionary learning (DL) based compressed sensing (CS) reconstruction for randomly undersampled five-dimensional (5D) MR Spectroscopic Imaging (3D spatial + 2D spectral) data acquired in prostate cancer patients and healthy controls, and test its feasibility at 8x and 12x undersampling factors.

MATERIALS AND METHODS

Prospectively undersampled 5D echo-planar J-resolved spectroscopic imaging (EP-JRESI) data were acquired in nine prostate cancer (PCa) patients and three healthy males. The 5D EP-JRESI data were reconstructed using DL and compared with gradient sparsity-based Total Variation (TV) and Perona-Malik (PM) methods. A hybrid reconstruction technique, Dictionary Learning-Total Variation (DLTV), was also designed to further improve the quality of reconstructed spectra.

RESULTS

The CS reconstruction of prospectively undersampled (8x and 12x) 5D EP-JRESI data acquired in prostate cancer and healthy subjects were performed using DL, DLTV, TV and PM. It is evident that the hybrid DLTV method can unambiguously resolve 2D J-resolved peaks including myo-inositol, citrate, creatine, spermine and choline.

CONCLUSION

Improved reconstruction of the accelerated 5D EP-JRESI data was observed using the hybrid DLTV. Accelerated acquisition of in vivo 5D data with as low as 8.33% samples (12x) corresponds to a total scan time of 14 min as opposed to a fully sampled scan that needs a total duration of 2.4 h (TR = 1.2 s, 32 [Formula: see text]×16 [Formula: see text]×8 [Formula: see text], 512 [Formula: see text] and 64 [Formula: see text]).

摘要

目的

本研究旨在开发基于字典学习(DL)的压缩感知(CS)重建方法,用于重建前列腺癌患者和健康对照者随机欠采样的 5 维(3D 空间+2D 谱)磁共振波谱成像(MRSI)数据,并在 8x 和 12x 欠采样因子下测试其可行性。

材料与方法

前瞻性地采集了 9 例前列腺癌(PCa)患者和 3 例健康男性的 5 维 EPI-JRESI 数据。使用 DL 对 5D EP-JRESI 数据进行重建,并与基于梯度稀疏的全变差(TV)和 Perona-Malik(PM)方法进行比较。还设计了一种混合重建技术,即字典学习-全变差(DLTV),以进一步提高重建谱的质量。

结果

使用 DL、DLTV、TV 和 PM 对前列腺癌和健康受试者的前瞻性欠采样(8x 和 12x)5D EP-JRESI 数据进行 CS 重建。显然,混合 DLTV 方法可以明确分辨包括肌醇、柠檬酸盐、肌酸、精胺和胆碱在内的 2D J 分辨峰。

结论

使用混合 DLTV 可明显改善加速 5D EP-JRESI 数据的重建。以低至 8.33%的样本(12x)加速采集体内 5D 数据,总扫描时间为 14 分钟,而完全采样扫描需要 2.4 小时(TR=1.2s,32[公式:见文本]×16[公式:见文本]×8[公式:见文本],512[公式:见文本]和 64[公式:见文本])。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fc8/9363346/5054b9d3be12/10334_2022_1029_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验