Zhang Yan, Dong Wenhao, Wang Yazi, Wu Qi, Yi Chenglin, Yang Yiqun, Xu Yifei, Nie Zhihong
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China.
Yiwu Research Institute of Fudan University, Yiwu City, Zhejiang, 322000, P. R. China.
Small Methods. 2022 Sep;6(9):e2200545. doi: 10.1002/smtd.202200545. Epub 2022 Jul 22.
Patchy nanoparticles (NPs) show many important applications, especially for constructing structurally complex colloidal materials, but existing synthetic strategies generate patchy NPs with limited types of symmetry. This article describes a versatile copolymer ligand-based strategy for the scalable synthesis of uniform Au-(SiO ) patchy NPs (x is the patch number and 1 ≤ x ≤ 5) with unusual symmetry at high yield. The hydrolysis and condensation of tetraethyl orthosilicate on block-random copolymer ligands induces the segregation of copolymers on gold NPs (AuNPs) and hence governs the structure and distribution of silica patches formed on the AuNPs. The resulting patchy NPs possess unique configurations where the silica patches are symmetrically arranged at one side of the core NP, resembling the geometry of polar small molecules. The number, size, and morphology of silica patches, as well as the spacing between the patches and the AuNP can be precisely tuned by tailoring copolymer architectures, grafting density of copolymers, and the size of AuNPs. Furthermore, it is demonstrated that the Au-(SiO ) patchy NPs can assemble into more complex superstructures through directional interaction between the exposed Au surfaces. This work offers new opportunities of designing next-generation complex patchy NPs for applications in such as biomedicines, self-assembly, and catalysis.
补丁状纳米粒子(NPs)展现出许多重要应用,尤其是在构建结构复杂的胶体材料方面,但现有的合成策略所产生的补丁状NPs对称性类型有限。本文描述了一种基于多功能共聚物配体的策略,用于高产率地可扩展合成具有不寻常对称性的均匀Au-(SiO )补丁状NPs(x为补丁数且1≤x≤5)。原硅酸四乙酯在嵌段-无规共聚物配体上的水解和缩合诱导共聚物在金纳米粒子(AuNPs)上的偏析,从而控制在AuNPs上形成的二氧化硅补丁的结构和分布。所得的补丁状NPs具有独特的构型,其中二氧化硅补丁对称地排列在核心NP的一侧,类似于极性小分子的几何形状。通过定制共聚物结构、共聚物的接枝密度以及AuNPs的尺寸,可以精确调节二氧化硅补丁的数量、大小和形态,以及补丁与AuNP之间的间距。此外,研究表明Au-(SiO )补丁状NPs可以通过暴露的Au表面之间的定向相互作用组装成更复杂的超结构。这项工作为设计下一代复杂补丁状NPs在生物医学、自组装和催化等领域的应用提供了新机会。