Pharmacokinetics & Drug Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA.
Clin Pharmacol Ther. 2023 May;113(5):986-1002. doi: 10.1002/cpt.2713. Epub 2022 Aug 10.
Solute carrier (SLC) transporters present as the loci of important drug-drug interactions (DDIs). Therefore, sponsors generate in vitro half-maximal inhibitory concentration (IC ) data and apply regulatory agency-guided "static" methods to assess DDI risk and the need for a formal clinical DDI study. Because such methods are conservative and high false-positive rates are likely (e.g., DDI study triggered when liver SLC R value ≥ 1.04 and renal SLC maximal unbound plasma (C )/IC ratio ≥ 0.02), investigators have attempted to deploy plasma- and urine-based SLC biomarkers in phase I studies to de-risk DDI and obviate the need for drug probe-based studies. In this regard, it was possible to generate in-house in vitro SLC IC data for various clinically (biomarker)-qualified perpetrator drugs, under standard assay conditions, and then estimate "% inhibition" for each SLC and relate it empirically to published clinical biomarker data (area under the plasma concentration vs. time curve (AUC) ratio (AUCR, AUC /AUC ) and % decrease in renal clearance (ΔCL )). After such a "calibration" exercise, it was determined that only compounds with high R values (> 1.5) and C /IC ratios (> 0.5) are likely to significantly modulate liver (AUCR > 1.25) and renal (ΔCL > 25%) biomarkers and evoke DDI risk. The % inhibition approach supports integration of liver and renal SLC data and allows one to generate pan-SLC inhibition signatures for different test perpetrators (e.g., SLC % inhibition ranking). In turn, such signatures can guide the selection of the most appropriate individual (or combinations of) biomarkers for testing in phase I studies.
溶质载体 (SLC) 转运体是重要药物相互作用 (DDI) 的作用部位。因此,申办方会生成体外半数最大抑制浓度 (IC ) 数据,并采用监管机构指导的“静态”方法来评估 DDI 风险和是否需要进行正式的临床 DDI 研究。由于这些方法较为保守,且可能出现较高的假阳性率(例如,当肝 SLC R 值≥1.04 和肾 SLC 最大未结合血浆浓度 (C )/IC 比值≥0.02 时,触发 DDI 研究),研究人员尝试在 I 期研究中使用基于血浆和尿液的 SLC 生物标志物来降低 DDI 风险,并避免进行基于药物探针的研究。在这方面,可以在标准检测条件下,针对各种具有临床(生物标志物)资格的潜在致犯药物,生成内部体外 SLC IC 数据,然后估计每个 SLC 的“抑制%”,并根据经验与已发表的临床生物标志物数据(血浆浓度-时间曲线下面积比(AUCR,AUC /AUC )和肾清除率降低的%(ΔCL ))相关联。经过这种“校准”,可以确定只有 R 值较高(>1.5)和 C /IC 比值较高(>0.5)的化合物才可能显著调节肝(AUCR>1.25)和肾(ΔCL >25%)生物标志物,并引发 DDI 风险。抑制%方法支持整合肝和肾 SLC 数据,并允许为不同的测试致犯者生成泛 SLC 抑制特征(例如,SLC 抑制%排序)。反过来,此类特征可以指导选择最适合的个体(或组合)生物标志物进行 I 期研究测试。