Suppr超能文献

非α型视网膜神经节细胞损伤反应的特征表明可能阻止了 ipRGC 功能的恢复。

Characterization of non-alpha retinal ganglion cell injury responses reveals a possible block to restoring ipRGC function.

机构信息

The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.

出版信息

Exp Neurol. 2022 Nov;357:114176. doi: 10.1016/j.expneurol.2022.114176. Epub 2022 Jul 20.

Abstract

Visual impairment caused by retinal ganglion cell (RGC) axon damage or degeneration affects millions of individuals throughout the world. While some progress has been made in promoting long-distance RGC axon regrowth following injury, it remains unclear whether RGC axons can properly reconnect with their central targets to restore visual function. Additionally, the regenerative capacity of many RGC subtypes remains unknown in part due to a lack of available genetic tools. Here, we use a new mouse line, Sema6A, that labels On direction-selective RGCs (oDSGCs) and characterize the survival and regenerative potential of these cells following optic nerve crush (ONC). In parallel, we use a previously characterized mouse line, Opn4, to answer these same questions for M1 intrinsically photosensitive RGCs (ipRGCs). We find that both M1 ipRGCs and oDSGCs are resilient to injury but do not display long-distance axon regrowth following Lin28a overexpression. Unexpectedly, we found that M1 ipRGC, but not oDSGC, intraretinal axons exhibit ectopic branching and are misaligned near the optic disc between one- and three-weeks following injury. Additionally, we observe that numerous ectopic presynaptic specializations associate with misguided ipRGC intraretinal axons. Taken together, these results reveal insights into the injury response of M1 ipRGCs and oDSGCs, providing a foundation for future efforts seeking to restore visual system function following injury.

摘要

视网膜神经节细胞(RGC)轴突损伤或变性导致的视力障碍影响着全世界数百万人。虽然在促进损伤后 RGC 长距离轴突再生方面已经取得了一些进展,但仍不清楚 RGC 轴突是否能够与它们的中枢靶标正确重新连接,以恢复视觉功能。此外,由于缺乏可用的遗传工具,许多 RGC 亚型的再生能力仍不清楚。在这里,我们使用一种新的小鼠品系 Sema6A,该品系标记 On 方向选择性 RGC(oDSGC),并研究了这些细胞在视神经挤压(ONC)后存活和再生的潜力。同时,我们使用以前表征的小鼠品系 Opn4 来回答这些相同的问题,用于 M1 内在光敏性 RGC(ipRGC)。我们发现,M1 ipRGC 和 oDSGC 对损伤都具有弹性,但在 Lin28a 过表达后不会表现出长距离轴突再生。出乎意料的是,我们发现 M1 ipRGC,但不是 oDSGC,视网膜内轴突在损伤后 1 至 3 周之间在视神经盘附近表现出异位分支和排列不齐。此外,我们观察到许多异位突触前特化与误导性 ipRGC 视网膜内轴突相关联。综上所述,这些结果揭示了 M1 ipRGC 和 oDSGC 对损伤的反应机制,为未来寻求恢复损伤后视觉系统功能的努力提供了基础。

相似文献

本文引用的文献

1
Central nervous system regeneration.中枢神经系统再生。
Cell. 2022 Jan 6;185(1):77-94. doi: 10.1016/j.cell.2021.10.029.
2
Development of the vertebrate retinal direction-selective circuit.脊椎动物视网膜方向选择性回路的发育。
Dev Biol. 2021 Sep;477:273-283. doi: 10.1016/j.ydbio.2021.06.004. Epub 2021 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验