Lin Xianqing, Zhou Wu, Liu Yingying, Shu Fang-Jie, Zou Chang-Ling, Dong Chunhua, Wei Cong, Dong Haiyun, Zhang Chuang, Yao Jiannian, Zhao Yong Sheng
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Small. 2022 Aug;18(33):e2202812. doi: 10.1002/smll.202202812. Epub 2022 Jul 24.
Manipulating photons in artificially structured materials is highly desired in modern photonic technology. Nontrivial topological structures are rapidly emerging as a state-of-art platform for achieving unprecedented fascinating phenomena of photon manipulation. However, the current studies mainly focus on planar structures, and the fabrication of photonic microstructures with specific topological geometric features still remains a great challenge. Extending the topological photonics to 3D microarchitectures is expected to enrich the photon manipulation capabilities and further advance the topological photonic devices. Here, a femtosecond laser direct writing technique is employed to fabricate 3D topological Möbius microring resonators from dye-doped polymer. The high-quality-factor Möbius microring resonator supports a unique spin-orbit coupled lasing at very low threshold. Due to the spin-orbit coupling induced geometric/Berry phase, the Möbius microrings, in striking contrast with ordinary microrings, output laser signals with all polarization states. The manipulation of miniaturized coherent light sources in the fabricated Möbius microrings represents a significant step forward toward 3D topological photonics that offers a novel design philosophy for functional photonic and optoelectronic devices.
在现代光子技术中,人们非常希望能在人工结构化材料中操控光子。非平凡拓扑结构正迅速成为一个前沿平台,用于实现前所未有的迷人光子操控现象。然而,目前的研究主要集中在平面结构上,制造具有特定拓扑几何特征的光子微结构仍然是一个巨大的挑战。将拓扑光子学扩展到三维微结构有望丰富光子操控能力,并进一步推动拓扑光子器件的发展。在此,采用飞秒激光直写技术,从染料掺杂聚合物中制备出三维拓扑莫比乌斯微环谐振器。高品质因数的莫比乌斯微环谐振器在非常低的阈值下支持独特的自旋 - 轨道耦合激光发射。由于自旋 - 轨道耦合诱导的几何/贝里相位,莫比乌斯微环与普通微环形成鲜明对比,能输出所有偏振态的激光信号。在制造的莫比乌斯微环中对小型化相干光源的操控代表了向三维拓扑光子学迈出的重要一步,为功能性光子和光电器件提供了一种新颖的设计理念。