Huo Pengcheng, Zhang Si, Fan Qingbin, Lu Yanqing, Xu Ting
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
Nanoscale. 2019 Jun 6;11(22):10646-10654. doi: 10.1039/c8nr09697j.
Optical polarization topology is a spatially varying polarization structure, which usually exists around the polarization singularity. In three-dimensional (3D) space, optical polarization topologies mainly contain two fundamental structures, Möbius strip and twisted ribbon, depending on the parity of half-twist number. These spectacular topologies have been widely found in the existence of electric fields from multi-beam interference. Here, we propose and numerically demonstrate that, depending on the photonic spin state of light, an ultrathin all-dielectric metasurface can achieve efficient generation and transformation of two arbitrary 3D polarization topologies. The spin-controlled, tightly-focused Poincaré beams generated by the metasurface exhibit topologically stable 3D polarization topologies around the waist of the focal point. The preparation of such optical polarization topologies may have potential applications in compact complex beam engineering, optical signal multiplexing and optical fabrication of microstructures with nontrivial topology.
光学偏振拓扑是一种空间变化的偏振结构,通常存在于偏振奇点周围。在三维(3D)空间中,光学偏振拓扑主要包含两种基本结构,莫比乌斯带和扭曲带,这取决于半扭转数的奇偶性。这些引人注目的拓扑结构在多光束干涉产生的电场中广泛存在。在此,我们提出并通过数值证明,基于光的光子自旋状态,一个超薄全介质超表面能够实现两种任意三维偏振拓扑的高效产生和转换。由超表面产生的自旋控制、紧密聚焦的庞加莱光束在焦点腰部周围呈现出拓扑稳定的三维偏振拓扑。这种光学偏振拓扑的制备可能在紧凑的复杂光束工程、光信号复用以及具有非平凡拓扑的微结构光学制造中具有潜在应用。