Suppr超能文献

使用 Biolog OmniLog® 系统(一种代谢表型测定法)检测金黄色葡萄球菌的抗生素药敏试验。

Antibiotic susceptibility testing of Staphylococcus aureus using the Biolog OmniLog® system, a metabolic phenotyping assay.

机构信息

Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA.

Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA.

出版信息

Diagn Microbiol Infect Dis. 2022 Oct;104(2):115759. doi: 10.1016/j.diagmicrobio.2022.115759. Epub 2022 Jul 1.

Abstract

Use of the Biolog OmniLog® phenotyping system for antibiotic susceptibility testing (AST) was evaluated using 51 clinical isolates of Staphylococcus aureus. MIC testing by broth microdilution was compared to results generated using the OmniLog® system for oxacillin, daptomycin, vancomycin, gentamicin, linezolid, and tetracycline. There was >90% essential and categorical agreement between methods for all antibiotics, except gentamicin, which had 83.6% essential agreement, although very major errors occurred with linezolid (n = 3) and daptomycin (n = 1). Precision was satisfactory, with 5 triplicate measurements in agreement. A quantitative threshold allowed automated interpretation of MICs yielding results comparable to manual interpretation; oxacillin, gentamicin, and tetracycline resistance could be identified at a median of 7.13, 5.25, and 7.25 hours, respectively. Limitations include the small number of isolates, and especially resistant isolates tested, and the focus on a single species. Overall, the OmniLog® system was a precise method for AST of S. aureus, although accuracy was imperfect.

摘要

使用 Biolog OmniLog®表型系统对 51 株金黄色葡萄球菌临床分离株进行抗生素药敏试验(AST)评估。肉汤微量稀释法 MIC 检测与 OmniLog®系统用于检测苯唑西林、达托霉素、万古霉素、庆大霉素、利奈唑胺和四环素的结果进行比较。除庆大霉素外,所有抗生素的方法之间均具有>90%的重要和分类一致性,庆大霉素的重要一致性为 83.6%,尽管利奈唑胺(n=3)和达托霉素(n=1)出现了非常大的错误。精密度令人满意,5 次重复测量结果一致。定量阈值允许自动解释 MIC,产生与手动解释相当的结果;苯唑西林、庆大霉素和四环素耐药性的中位检测时间分别为 7.13、5.25 和 7.25 小时。局限性包括测试的分离株数量较少,尤其是耐药分离株较少,以及专注于单一物种。总的来说,OmniLog®系统是一种用于金黄色葡萄球菌 AST 的精确方法,尽管准确性不完美。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验