Suppr超能文献

PregGAN:基于条件生成对抗网络的乳腺癌预后预测模型。

PregGAN: A prognosis prediction model for breast cancer based on conditional generative adversarial networks.

机构信息

Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China; Henan Engineering Laboratory of Spatial Information Processing, Henan University, Kaifeng 475004, China.

Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China.

出版信息

Comput Methods Programs Biomed. 2022 Sep;224:107026. doi: 10.1016/j.cmpb.2022.107026. Epub 2022 Jul 16.

Abstract

BACKGROUND AND OBJECTIVE

Generative adversarial network (GAN) is able to learn from a set of training data and generate new data with the same characteristics as the training data. Based on the characteristics of GAN, this paper developed its capability as a tool of disease prognosis prediction, and proposed a prognostic model PregGAN based on conditional generative adversarial network (CGAN).

METHODS

The idea of PregGAN is to generate the prognosis prediction results based on the clinical data of patients. PregGAN added the clinical data as conditions to the training process. Conditions were used as the input to the generator along with noises. The generator synthesized new samples using the noises vectors and the conditions. In order to solve the mode collapse problem during PregGAN training, Wasserstein distance and gradient penalty strategy were used to make the training process more stable.

RESULTS

In the prognosis prediction experiments using the METABRIC breast cancer dataset, PregGAN achieved good results, with the average accurate (ACC) of 90.6% and the average AUC (area under curve) of 0.946.

CONCLUSIONS

Experimental results show that PregGAN is a reliable prognosis predictive model for breast cancer. Due to the strong ability of probability distribution learning, PregGAN can also be used for the prognosis prediction of other diseases.

摘要

背景与目的

生成对抗网络(GAN)能够从一组训练数据中学习,并生成具有与训练数据相同特征的新数据。基于 GAN 的特点,本文将其开发为疾病预后预测的工具,并提出了一种基于条件生成对抗网络(CGAN)的预后预测模型 PregGAN。

方法

PregGAN 的思想是基于患者的临床数据生成预后预测结果。PregGAN 将临床数据作为条件添加到训练过程中。条件与噪声一起作为输入到生成器。生成器使用噪声向量和条件合成新的样本。为了解决 PregGAN 训练过程中的模式崩溃问题,使用 Wasserstein 距离和梯度惩罚策略使训练过程更加稳定。

结果

在使用 METABRIC 乳腺癌数据集进行的预后预测实验中,PregGAN 取得了良好的效果,平均准确率(ACC)为 90.6%,平均 AUC(曲线下面积)为 0.946。

结论

实验结果表明,PregGAN 是一种可靠的乳腺癌预后预测模型。由于其强大的概率分布学习能力,PregGAN 也可用于其他疾病的预后预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验