Suppr超能文献

A comparative study of hepatic DNA repair, DNA replication and hepatotoxicity in the CD-1 mouse following multiple administrations of dimethylnitrosamine.

作者信息

Doolittle D J, Muller G, Scribner H E

出版信息

Mutat Res. 1987 Jun;188(2):141-7. doi: 10.1016/0165-1218(87)90103-0.

Abstract

The objective of this study was to quantify hepatic DNA repair and DNA replication following multiple administrations of dimethylnitrosamine (DMN) and to determine if these events were correlated with hepatotoxicity. Male CD-1 mice, 50-100 days old, were dosed daily, p.o., with DMN in water at dose levels of 2, 4, 7 and 10 mg/kg for 2 weeks. After 2, 7 and 14 days of dosing, hepatocytes were isolated by an in situ perfusion procedure, incubated in the presence of [3H] thymidine, and fixed. Unscheduled as well as scheduled DNA synthesis were assessed by quantitative autoradiography. Unscheduled DNA synthesis (UDS) represents DNA repair while scheduled DNA synthesis (S phase) represents DNA replication. In addition, the animals' serum was examined for enzymes which indicate hepatic toxicity. After 1, 7 and 14 days of dosing, animals were orbital-bled and the serum was analyzed for serum glutamic pyruvic transaminase (SGPT), serum glutamic oxalacetic transaminase (SGOT), alkaline phosphatase (AP) and gamma-glutamyl transpeptidase (GGT). No morbidity or mortality was observed at dose levels of 2 and 4 mg/kg, but all animals receiving 7 and 10 mg/kg died after 4-6 days of dosing. GGT or AP were not elevated at any dose level or at any time point examined. At 4 mg/kg only a slight increase (less than or equal to 2 X) in the concentration of SGOT and SGPT was observed but a sharp increase (greater than 20 X) in replicative DNA synthesis was seen. The 2 mg/kg dose level of DMN did not increase replicative DNA synthesis and SGOT and SGPT were not elevated above control values at any time point following dosing at 2 mg/kg. A weakly positive DNA repair response was observed for dose levels of 4, 7 and 10 mg/kg DMN after two consecutive days of dosing. No DNA repair was observed after either 7 or 14 days of dosing at the 2 and 4 mg/kg/day levels. These results indicate that hepatic toxicity is associated with the induction of replicative DNA synthesis (S phase) but not with the induction of DNA repair. The results also confirm and extend a previous study (Doolittle et al., 1987b) indicating that a significant elevation in hepatic DNA replication is induced by hepatocarcinogens after multiple administrations of dose levels which do not alter hepatic DNA replication after a single administration. This finding indicates that the utility of the in vivo-in vitro hepatocyte assay may be enhanced by using a multi-dose protocol.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验