Suppr超能文献

用于预测无隐私侵犯的透析中低血压的深度学习模型:一项回顾性双中心研究。

Deep Learning Model for Predicting Intradialytic Hypotension Without Privacy Infringement: A Retrospective Two-Center Study.

作者信息

Kim Hyung Woo, Heo Seok-Jae, Kim Minseok, Lee Jakyung, Park Keun Hyung, Lee Gongmyung, Baeg Song In, Kwon Young Eun, Choi Hye Min, Oh Dong-Jin, Nam Chung-Mo, Kim Beom Seok

机构信息

Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.

Department of Biostatistics and Computing, Yonsei University Graduate School, Seoul, South Korea.

出版信息

Front Med (Lausanne). 2022 Jul 7;9:878858. doi: 10.3389/fmed.2022.878858. eCollection 2022.

Abstract

OBJECTIVE

Previously developed Intradialytic hypotension (IDH) prediction models utilize clinical variables with potential privacy protection issues. We developed an IDH prediction model using minimal variables, without the risk of privacy infringement.

METHODS

Unidentifiable data from 63,640 hemodialysis sessions (26,746 of 79 patients for internal validation, 36,894 of 255 patients for external validation) from two Korean hospital hemodialysis databases were finally analyzed, using three IDH definitions: (1) systolic blood pressure (SBP) nadir <90 mmHg (Nadir90); (2) SBP decrease ≥20 mmHg from baseline (Fall20); and (3) SBP decrease ≥20 mmHg and/or mean arterial pressure decrease ≥10 mmHg (Fall20/MAP10). The developed models use 30 min information to predict an IDH event in the following 10 min window. Area under the receiver operating characteristic curves (AUROCs) and precision-recall curves were used to compare machine learning and deep learning models by logistic regression, XGBoost, and convolutional neural networks.

RESULTS

Among 344,714 segments, 9,154 (2.7%), 134,988 (39.2%), and 149,674 (43.4%) IDH events occurred according to three different IDH definitions (Nadir90, Fall20, and Fall20/MAP10, respectively). Compared with models including logistic regression, random forest, and XGBoost, the deep learning model achieved the best performance in predicting IDH (AUROCs: Nadir90, 0.905; Fall20, 0.864; Fall20/MAP10, 0.863) only using measurements from hemodialysis machine during dialysis session.

CONCLUSIONS

The deep learning model performed well only using monitoring measurement of hemodialysis machine in predicting IDH without any personal information that could risk privacy infringement.

摘要

目的

先前开发的透析中低血压(IDH)预测模型使用的临床变量存在潜在的隐私保护问题。我们开发了一种使用最少变量的IDH预测模型,不存在隐私侵犯风险。

方法

最终分析了来自两个韩国医院血液透析数据库的63640次血液透析治疗的不可识别数据(79例患者中的26746次用于内部验证,255例患者中的36894次用于外部验证),使用三种IDH定义:(1)收缩压(SBP)最低点<90 mmHg(最低点90);(2)SBP较基线下降≥20 mmHg(下降20);(3)SBP下降≥20 mmHg和/或平均动脉压下降≥10 mmHg(下降20/平均动脉压10)。所开发的模型使用30分钟的信息来预测接下来10分钟窗口内的IDH事件。通过逻辑回归、XGBoost和卷积神经网络,使用受试者操作特征曲线下面积(AUROCs)和精确召回率曲线来比较机器学习和深度学习模型。

结果

在344714个片段中,根据三种不同的IDH定义(分别为最低点90、下降20和下降20/平均动脉压10),发生了9154次(2.7%)、134988次(39.2%)和149674次(43.4%)IDH事件。与包括逻辑回归、随机森林和XGBoost的模型相比,深度学习模型在仅使用透析过程中血液透析机的测量值预测IDH方面表现最佳(AUROCs:最低点90为0.905;下降20为0.864;下降20/平均动脉压10为0.863)。

结论

深度学习模型仅使用血液透析机的监测测量值在预测IDH方面表现良好,且不涉及任何可能存在隐私侵犯风险的个人信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/742c/9300869/35f12b1678dc/fmed-09-878858-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验