Suppr超能文献

基于预透析特征的透析中低血压预测——一种基于深度学习的人工智能模型。

Prediction of intradialytic hypotension using pre-dialysis features-a deep learning-based artificial intelligence model.

机构信息

Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Division of Nephrology, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

出版信息

Nephrol Dial Transplant. 2023 Sep 29;38(10):2310-2320. doi: 10.1093/ndt/gfad064.

Abstract

BACKGROUND

Intradialytic hypotension (IDH) is a serious complication of hemodialysis (HD) that is associated with increased risks of cardiovascular morbidity and mortality. However, its accurate prediction remains a clinical challenge. The aim of this study was to develop a deep learning-based artificial intelligence (AI) model to predict IDH using pre-dialysis features.

METHODS

Data from 2007 patients with 943 220 HD sessions at seven university hospitals were used. The performance of the deep learning model was compared with three machine learning models (logistic regression, random forest and XGBoost).

RESULTS

IDH occurred in 5.39% of all studied HD sessions. A lower pre-dialysis blood pressure (BP), and a higher ultrafiltration (UF) target rate and interdialytic weight gain in IDH sessions compared with non-IDH sessions, and the occurrence of IDH in previous sessions was more frequent among IDH sessions compared with non-IDH sessions. Matthews correlation coefficient and macro-averaged F1 score were used to evaluate both positive and negative prediction performances. Both values were similar in logistic regression, random forest, XGBoost and deep learning models, developed with data from a single session. When combining data from the previous three sessions, the prediction performance of the deep learning model improved and became superior to that of other models. The common top-ranked features for IDH prediction were mean systolic BP (SBP) during the previous session, UF target rate, pre-dialysis SBP, and IDH experience during the previous session.

CONCLUSIONS

Our AI model predicts IDH accurately, suggesting it as a reliable tool for HD treatment.

摘要

背景

透析中低血压(IDH)是血液透析(HD)的一种严重并发症,与心血管发病率和死亡率增加相关。然而,其准确预测仍然是一个临床挑战。本研究旨在开发一种基于深度学习的人工智能(AI)模型,使用透析前特征预测 IDH。

方法

使用来自七所大学医院的 2007 名患者的 943220 例 HD 治疗的数据。比较了深度学习模型与三种机器学习模型(逻辑回归、随机森林和 XGBoost)的性能。

结果

在所有研究的 HD 治疗中,IDH 发生的比例为 5.39%。与非 IDH 治疗相比,IDH 治疗的透析前血压(BP)更低,超滤(UF)目标率和透析间体重增加更高,且与非 IDH 治疗相比,IDH 治疗在之前的治疗中更频繁地发生 IDH。马修斯相关系数和宏观平均 F1 评分用于评估阳性和阴性预测性能。在单一会话数据开发的逻辑回归、随机森林、XGBoost 和深度学习模型中,这两个值均相似。当结合前三个会话的数据时,深度学习模型的预测性能提高,并且优于其他模型。用于 IDH 预测的常见顶级特征是前一次会话的平均收缩压(SBP)、UF 目标率、透析前 SBP 和前一次会话的 IDH 经历。

结论

我们的 AI 模型可以准确预测 IDH,表明它是一种可靠的 HD 治疗工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验