Suppr超能文献

利用CANARY进行流域监测的近实时事件检测。

Near real-time event detection for watershed monitoring with CANARY.

作者信息

Burkhardt Jonathan B, Sahoo Debabrata, Hammond Benjamin, Long Michael, Haxton Terranna, Murray Regan

机构信息

Office of Research and Development, US Environmental Protection Agency, 26 Martin Luther King Dr West, Cincinnati, OH, 45268, USA.

Department of Agricultural Sciences, Clemson University, McAdams Hall, Clemson, SC, 29634, USA.

出版信息

Env Sci Adv. 2022 Apr 8;1(2):170-181. doi: 10.1039/d2va00014h.

Abstract

Illicit discharges in surface waters are a major concern in urban environments and can impact ecosystem and human health by introducing pollutants (, petroleum-based chemicals, metals, nutrients) into natural water bodies. Early detection of pollutants, especially those with regulatory limits, could aid in timely management of sources or other responses. Various monitoring techniques (, sensor-based, automated sampling) could help alert decision makers about illicit discharges. In this study, a multi-parameter sensor-driven environmental monitoring effort to detect or identify suspected illicit spills or dumping events in an urban watershed was supported with a real-time event detection software, CANARY. CANARY was selected because it is able to automatically analyze data and detect events from a range of sensors and sensor types. The objective of the monitoring project was to detect illicit events in baseline flow. CANARY was compared to a manual illicit event identification method, where CANARY found > 90% of the manually identified illicit events but also found additional unidentified events that matched manual event identification criteria. Rainfall events were automatically filtered out to reduce false alarms. Further, CANARY results were used to trigger an automatic sampler for more thorough analyses. CANARY was found to reduce the burden of manually monitoring these watersheds and offer near real-time event detection data that could support automated sampling, making it a valuable component of the monitoring effort.

摘要

地表水中的非法排放是城市环境中的一个主要问题,通过将污染物(如石油基化学品、金属、营养物质)引入天然水体,会影响生态系统和人类健康。早期检测污染物,尤其是那些有监管限值的污染物,有助于及时管理污染源或采取其他应对措施。各种监测技术(如基于传感器的、自动采样)可以帮助提醒决策者注意非法排放。在本研究中,一个多参数传感器驱动的环境监测工作,旨在检测或识别城市流域中疑似非法泄漏或倾倒事件,该工作得到了实时事件检测软件CANARY的支持。选择CANARY是因为它能够自动分析数据,并从一系列传感器和传感器类型中检测事件。监测项目的目标是在基流中检测非法事件。将CANARY与一种手动非法事件识别方法进行了比较,结果显示CANARY发现了超过90%的手动识别的非法事件,但也发现了符合手动事件识别标准的其他未识别事件。降雨事件被自动过滤掉以减少误报。此外,CANARY的结果被用于触发自动采样器进行更全面的分析。研究发现,CANARY减轻了手动监测这些流域的负担,并提供了近乎实时的事件检测数据,可支持自动采样,使其成为监测工作的一个有价值的组成部分。

相似文献

1
Near real-time event detection for watershed monitoring with CANARY.
Env Sci Adv. 2022 Apr 8;1(2):170-181. doi: 10.1039/d2va00014h.
3
Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.
Rev Environ Contam Toxicol. 2010;207:1-93. doi: 10.1007/978-1-4419-6406-9_1.
5
Determination of dual parameter auto-sampling trigger thresholds for pollutant load monitoring in various land uses.
Environ Monit Assess. 2015 May;187(5):223. doi: 10.1007/s10661-015-4424-7. Epub 2015 Apr 3.
7
On-line monitoring of minor oil spills in natural waters using sediment microbial fuel cell sensors equipped with vertical floating cathodes.
Sci Total Environ. 2021 Aug 15;782:146549. doi: 10.1016/j.scitotenv.2021.146549. Epub 2021 Mar 18.
8
A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.
Environ Sci Pollut Res Int. 2018 Mar;25(7):6514-6531. doi: 10.1007/s11356-017-0946-6. Epub 2017 Dec 18.
9
Human Health and Ocean Pollution.
Ann Glob Health. 2020 Dec 3;86(1):151. doi: 10.5334/aogh.2831.
10
Longitudinal stream synoptic monitoring tracks chemicals along watershed continuums: a typology of trends.
Front Environ Sci. 2023 Jun 9;11:1-28. doi: 10.3389/fenvs.2023.1122485.

本文引用的文献

2
CANARY Eases Water Quality Event Detection.
Opflow. 2017 Apr 1;43(4):30-32. doi: 10.5991/opf.2017.43.0025.
3
Chemosensors in environmental monitoring: challenges in ruggedness and selectivity.
Anal Bioanal Chem. 2009 Jan;393(2):467-72. doi: 10.1007/s00216-008-2464-3. Epub 2008 Nov 4.
4
Assessment of efficient sampling designs for urban stormwater monitoring.
Water Res. 2002 Mar;36(6):1556-64. doi: 10.1016/s0043-1354(01)00353-0.
5
Environmental monitoring in the The Netherlands: past developments and future challenges.
Environ Monit Assess. 2001 May;68(3):313-35. doi: 10.1023/a:1010759810151.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验