Cronin L, Taylor C M, Briciu Burghina C, Lucy F E, Regan F
School of Chemical Sciences, Glasnevin, Dublin 9, Ireland.
Centre for Environmental Research, Innovation and Sustainability CERIS, Dept. of Environmental Science, Atlantic Technological University, Sligo Campus, F91 YW50, Ireland.
MethodsX. 2025 Jul 27;15:103538. doi: 10.1016/j.mex.2025.103538. eCollection 2025 Dec.
Improving European surface water quality requires urgent action to address diffuse pollution sources particularly from agriculture, with increased frequency and intensity of hydroclimatic events also a key driver of pollutant export to waters and water quality decline worldwide. However, the need for comprehensive, practical protocols for sensor deployment, sensor maintenance and data management for the adoption of high frequency water quality monitoring has been highlighted, along with the challenges for citizen scientists in analyzing millions of water quality data points and sharing metadata. The practical method presented, with reproducibility built into the workflow, is designed for multiple users and a step-by-step application of the workflow is demonstrated including:•Deployment arrangement for water quality sondes in two temporary monitoring stations with different site characteristics.•Data collection and data validation methods.•Concise, reproducible, open-source workflow detailing the use of R, R markdown and US EPA CANARY software for data import, data cleaning, data visualization, data integrity, along with site-specific CANARY event system configuration for the detection of potential water quality events.Results for two monitoring stations on different rivers show CANARY successfully identified 100 % (n 47) and 97 % (n 39) of the manually identified turbidity events.
改善欧洲地表水水质需要采取紧急行动,以解决特别是来自农业的分散污染源,水文气候事件频率和强度的增加也是全球污染物排入水体和水质下降的关键驱动因素。然而,人们强调需要制定全面、实用的传感器部署、传感器维护和数据管理协议,以采用高频水质监测,同时公民科学家在分析数百万个水质数据点和共享元数据方面也面临挑战。所提出的实用方法在工作流程中内置了可重复性,适用于多个用户,并展示了工作流程的逐步应用,包括:• 在两个具有不同场地特征的临时监测站部署水质探测仪的安排。• 数据收集和数据验证方法。• 简洁、可重复、开源的工作流程,详细介绍了使用R、R markdown和美国环保署的CANARY软件进行数据导入、数据清理、数据可视化、数据完整性处理,以及针对特定场地的CANARY事件系统配置,用于检测潜在的水质事件。不同河流上两个监测站的结果显示,CANARY成功识别出了人工识别的浊度事件的100%(n = 47)和97%(n = 39)。