Suppr超能文献

在银屑病中寻找基因调控网络:基于树的机器学习方法的应用。

Finding Gene Regulatory Networks in Psoriasis: Application of a Tree-Based Machine Learning Approach.

机构信息

Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.

The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.

出版信息

Front Immunol. 2022 Jul 7;13:921408. doi: 10.3389/fimmu.2022.921408. eCollection 2022.

Abstract

Psoriasis is a chronic inflammatory skin disorder. Although it has been studied extensively, the molecular mechanisms driving the disease remain unclear. In this study, we utilized a tree-based machine learning approach to explore the gene regulatory networks underlying psoriasis. We then validated the regulators and their networks in an independent cohort. We identified some key regulators of psoriasis, which are candidates to serve as potential drug targets and disease severity biomarkers. According to the gene regulatory network that we identified, we suggest that interferon signaling represents a key pathway of psoriatic inflammation.

摘要

银屑病是一种慢性炎症性皮肤病。尽管已经进行了广泛的研究,但导致这种疾病的分子机制仍不清楚。在这项研究中,我们利用基于树的机器学习方法来探索银屑病的基因调控网络。然后,我们在一个独立的队列中验证了这些调节剂及其网络。我们确定了一些银屑病的关键调节剂,它们是潜在的药物靶点和疾病严重程度生物标志物的候选物。根据我们确定的基因调控网络,我们提出干扰素信号代表了银屑病炎症的关键途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb62/9301015/72e51ed0487c/fimmu-13-921408-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验