Suppr超能文献

Simulation Analysis and Control of Multi-energy System for Fuel Cell Hybrid Electric Vehicle Based on Wavelet Transform.

作者信息

Li Mengjie, Liang Qianchao, Hu Jinyi, Liang Yifan, Zhao Jianfeng

机构信息

Department of Power Engineering, Naval University of Engineering, Wuhan, Hubei 430033, China.

出版信息

Comput Intell Neurosci. 2022 Jul 14;2022:3011307. doi: 10.1155/2022/3011307. eCollection 2022.

Abstract

In order to address the issue of multi-energy system fuel cells having a short life cycle and low fuel efficiency, a Fuel Cell Hybrid Vehicle was developed. The goal of this research is to use wavelet transformation to simulate, evaluate, and regulate the multi-energy system of a fuel cell hybrid car. To begin, a hybrid model of the fuel cell and an overall dynamic model of the fuel cell, as well as a DC/DC converter model, are constructed in accordance with the simulation environment. Second, the hybrid vehicle system's power information is successfully captured, and the power signal acquired is processed using the wavelet transform. The fuel cell power control and the composite power supply's power allocation module are independently input into the hybrid system's low frequency and high frequency power requirements. PI control is used to regulate the power of the storage device in the hybrid power system, as well as the power settings of the output fuel cell and supercapacitor. The simulation results show that the power battery fluctuation range of the hybrid vehicle multi-energy system based on the wavelet transform proposed in this paper is significantly smaller than that of other methods, and the entire process operates at low power points. The results of the experiments suggest that the strategies given in this study can successfully extend the life of fuel cells while also lowering the overall fuel efficiency of the vehicle system.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验