ACS Appl Mater Interfaces. 2022 Aug 3;14(30):34527-34537. doi: 10.1021/acsami.2c11466. Epub 2022 Jul 24.
The increasing incidence of microbial infections and a limited arsenal of effective antibacterial and antifungal agents have entailed the need for new broad-spectrum therapeutics. Polymer-inorganic nanocomposites have emerged as an integral choice of antimicrobials but are limited by complicated synthesis, narrow-spectrum activity, and poor efficacy. Herein, chloride counterions of a nontoxic, moderately antibacterial polymer have been explored for nanoprecipitation-based synthesis of water-soluble polymer-silver chloride nanocomposites. With the controlled release of silver ions, the nanocomposites were highly active against multidrug-resistant bacteria as well as fluconazole-resistant fungi. Alongside the elimination of metabolically inactive bacterial cells, the nanocomposites disrupted polymicrobial biofilms, unlike antibiotics and only silver-based ointments. This underlined the role of the engineered composite design, where the polymer interacted with the biofilm matrix, facilitating the penetration of nanoparticles to kill microbes. Further, the nanocomposite diminished burden in mice skin infection (>99.9%) with no dermal toxicity proving its potential for clinical translation.
微生物感染的发病率不断上升,而有效的抗菌和抗真菌药物的储备有限,这使得人们需要新的广谱治疗方法。聚合物-无机纳米复合材料已成为抗菌剂的首选,但由于合成复杂、广谱活性有限和疗效不佳而受到限制。在本文中,探索了一种无毒、具有适度抗菌活性的聚合物的氯离子抗衡离子,用于基于纳米沉淀的水溶性聚合物-氯化银纳米复合材料的合成。通过银离子的控制释放,纳米复合材料对多药耐药细菌以及氟康唑耐药真菌具有高度活性。纳米复合材料不同于抗生素和仅含银的软膏,不仅能消除代谢不活跃的细菌细胞,还能破坏多微生物生物膜。这强调了工程复合材料设计的作用,其中聚合物与生物膜基质相互作用,促进纳米颗粒穿透以杀死微生物。此外,纳米复合材料减少了小鼠皮肤感染的负担(>99.9%),且无皮肤毒性,证明了其在临床转化方面的潜力。