Suppr超能文献

非血红素双氧桥铁配合物作为氢/氧原子转移反应中水氧化过程中的活性中间体。

Non-heme oxoiron complexes as active intermediates in the water oxidation process with hydrogen/oxygen atom transfer reactions.

机构信息

Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy-502285, Telangana, India.

出版信息

Dalton Trans. 2022 Aug 9;51(31):11899-11908. doi: 10.1039/d2dt01295b.

Abstract

In this study, we explore the water oxidation process with the help of density functional theory. The formation of an oxygen-oxygen bond is crucial in the water oxidation process. Here, we report the formation of the oxygen-oxygen bond by the N5-coordinate oxoiron species with a higher oxidation state of Fe and Fe. This bond formation is studied through the nucleophilic addition of water molecules and the transfer of the oxygen atom from -chloroperbenzoic acid (mCPBA). Our study reveals that the oxygen-oxygen bond formation by reacting mCPBA with FeO requires less activation barrier (13.7 kcal mol) than the other three pathways. This bond formation by the oxygen atom transfer (OAT) pathway is more favorable than that achieved by the hydrogen atom transfer (HAT) pathway. In both cases, the oxygen-oxygen bond formation occurs by interacting the σ*d-2p molecular orbital of the iron-oxo intermediate with the 2p orbital of the oxygen atom. From this study, we understand that the oxygen-oxygen bond formation by FeO with the OAT process is also feasible (16 kcal mol), suggesting that FeO may not always be required for the water oxidation process by non-heme N5-oxoiron. After the oxygen-oxygen bond formation, the release of the dioxygen molecule occurs with the addition of the water molecule. The release of dioxygen requires a barrier of 7.0 kcal mol. The oxygen-oxygen bond formation is found to be the rate-determining step.

摘要

在这项研究中,我们借助密度泛函理论探索了水氧化过程。氧-氧键的形成是水氧化过程中的关键。在这里,我们报告了通过具有更高氧化态的 Fe 和 Fe 的 N5 配位氧铁物种形成氧-氧键。通过水分子的亲核加成和从 -氯过氧苯甲酸 (mCPBA) 转移氧原子来研究这种键的形成。我们的研究表明,与其他三种途径相比,mCPBA 与 FeO 反应形成氧-氧键所需的活化能垒更低(13.7 kcal/mol)。通过氧原子转移(OAT)途径形成的这种键比通过氢原子转移(HAT)途径形成的键更有利。在这两种情况下,氧-氧键的形成都是通过铁-氧中间物的 σ*d-2p 分子轨道与氧原子的 2p 轨道相互作用而发生的。通过这项研究,我们了解到,OAT 过程中 FeO 的氧-氧键形成也是可行的(16 kcal/mol),这表明非血红素 N5-氧铁不一定总是需要进行水氧化过程。氧-氧键形成后,随着水分子的加入,释放出氧气分子。释放氧气需要 7.0 kcal/mol 的能垒。氧-氧键的形成被发现是速率决定步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验