Suppr超能文献

非血红素双氧铁(IV)中间体在接近 C-H 键活化过渡态时形成氧自由基。

Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C-H bond activation transition state.

机构信息

Lehrstuhl für Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany.

出版信息

Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1228-33. doi: 10.1073/pnas.1008411108. Epub 2011 Jan 10.

Abstract

Oxo-iron(IV) species are implicated as key intermediates in the catalytic cycles of heme and nonheme oxygen activating iron enzymes that selectively functionalize aliphatic C-H bonds. Ferryl complexes can exist in either quintet or triplet ground states. Density functional theory calculations predict that the quintet oxo-iron(IV) species is more reactive toward C-H bond activation than its corresponding triplet partner, however; the available experimental data on model complexes suggests that both spin multiplicities display comparable reactivities. To clarify this ambiguity, a detailed electronic structure analysis of alkane hydroxylation by an oxo-iron(IV) species on different spin-state potential energy surfaces is performed. According to our results, the lengthening of the Fe-oxo bond in ferryl reactants, which is the part of the reaction coordinate for H-atom abstraction, leads to the formation of oxyl-iron(III) species that then perform actual C-H bond activation. The differential reactivity stems from the fact that the two spin states have different requirements for the optimal angle at which the substrate should approach the (FeO)(2+) core because distinct electron acceptor orbitals are employed on the two surfaces. The H-atom abstraction on the quintet surface favors the "σ-pathway" that requires an essentially linear attack; by contrast a "π-channel" is operative on the triplet surface that leads to an ideal attack angle near 90°. However, the latter is not possible due to steric crowding; thus, the attenuated orbital interaction and the unavoidably increased Pauli repulsion result in the lower reactivity of the triplet oxo-iron(IV) complexes.

摘要

氧合铁(IV)物种被认为是血红素和非血红素氧激活铁酶催化循环中的关键中间体,这些酶选择性地功能化脂肪族 C-H 键。铁酰基配合物可以处于 quintet 或 triplet 基态。密度泛函理论计算预测 quintet 态的氧合铁(IV)物种比其相应的三重态配合物更具反应性,然而;可用的模型配合物实验数据表明,两种自旋多重性都显示出相当的反应性。为了澄清这种歧义,对不同自旋态势能表面上的氧合铁(IV)物种对烷烃羟化作用进行了详细的电子结构分析。根据我们的结果,在 ferryl 反应物中,Fe-氧键的延长,这是 H 原子提取的反应坐标的一部分,导致形成氧合铁(III)物种,然后进行实际的 C-H 键活化。差异反应性源于这样一个事实,即两种自旋态对底物接近 (FeO)(2+)核心的最佳角度有不同的要求,因为在两个表面上使用了不同的电子受体轨道。 quintet 表面上的 H 原子提取有利于需要基本线性攻击的“σ 途径”;相比之下,三重态表面上的“π 通道”是有效的,导致接近 90°的理想攻击角度。然而,由于空间拥挤,后者是不可能的;因此,轨道相互作用的减弱和不可避免的增加的 Pauli 排斥导致三重态氧合铁(IV)配合物的反应性降低。

相似文献

7
Synthetic mononuclear nonheme iron-oxygen intermediates.合成单核非血红素铁-氧中间体。
Acc Chem Res. 2015 Aug 18;48(8):2415-23. doi: 10.1021/acs.accounts.5b00218. Epub 2015 Jul 23.

引用本文的文献

5
New Frontiers in Nonheme Enzymatic Oxyferryl Species.非血红素酶氧合铁物种的新前沿。
Chembiochem. 2024 Nov 18;25(22):e202400307. doi: 10.1002/cbic.202400307. Epub 2024 Aug 7.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验