Suppr超能文献

基于 3D 卷积神经网络的多模态 MRI 对全脑评估在缺氧缺血性昏迷患者中的应用。

Multimodal MRI-Based Whole-Brain Assessment in Patients In Anoxoischemic Coma by Using 3D Convolutional Neural Networks.

机构信息

Toulouse NeuroImaging Center, Toulouse III Paul Sabatier University, Inserm, Toulouse, France.

Critical Care Unit, University Teaching Hospital of Purpan, Toulouse, France.

出版信息

Neurocrit Care. 2022 Aug;37(Suppl 2):303-312. doi: 10.1007/s12028-022-01525-z. Epub 2022 Jul 25.

Abstract

BACKGROUND

There is an unfulfilled need to find the best way to automatically capture, analyze, organize, and merge structural and functional brain magnetic resonance imaging (MRI) data to ultimately extract relevant signals that can assist the medical decision process at the bedside of patients in postanoxic coma. We aimed to develop and validate a deep learning model to leverage multimodal 3D MRI whole-brain times series for an early evaluation of brain damages related to anoxoischemic coma.

METHODS

This proof-of-concept, prospective, cohort study was undertaken at the intensive care unit affiliated with the University Hospital (Toulouse, France), between March 2018 and May 2020. All patients were scanned in coma state at least 2 days (4 ± 2 days) after cardiac arrest. Over the same period, age-matched healthy volunteers were recruited and included. Brain MRI quantification encompassed both "functional data" from regions of interest (precuneus and posterior cingulate cortex) with whole-brain functional connectivity analysis and "structural data" (gray matter volume, T1-weighted, fractional anisotropy, and mean diffusivity). A specifically designed 3D convolutional neuronal network (CNN) was created to allow conscious state discrimination (coma vs. controls) by using raw MRI indices as the input. A voxel-wise visualization method based on the study of convolutional filters was applied to support CNN outcome. The Ethics Committee of the University Teaching Hospital of Toulouse, France (2018-A31) approved the study and informed consent was obtained from all participants.

RESULTS

The final cohort consisted of 29 patients in postanoxic coma and 34 healthy volunteers. Coma patients were successfully discerned from controls by using 3D CNN in combination with different MR indices. The best accuracy was achieved by functional MRI data, in particular with resting-state functional MRI of the posterior cingulate cortex, with an accuracy of 0.96 (range 0.94-0.98) on the test set from 10-time repeated tenfold cross-validation. Even more satisfactory performances were achieved through the majority voting strategy, which was able to compensate for mistakes from single MR indices. Visualization maps allowed us to identify the most relevant regions for each MRI index, notably regions previously described as possibly being involved in consciousness emergence. Interestingly, a posteriori analysis of misclassified patients indicated that they may present some common functional MRI traits with controls, which suggests further favorable outcomes.

CONCLUSIONS

A fully automated identification of clinically relevant signals from complex multimodal neuroimaging data is a major research topic that may bring a radical paradigm shift in the neuroprognostication of patients with severe brain injury. We report for the first time a successful discrimination between patients in postanoxic coma patients from people serving as controls by using 3D CNN whole-brain structural and functional MRI data. Clinical Trial Number http://ClinicalTrials.gov (No. NCT03482115).

摘要

背景

需要找到一种最佳方法,以自动捕获、分析、组织和合并结构性和功能性磁共振成像(MRI)脑数据,最终提取相关信号,以协助患者处于缺氧性昏迷状态下的床边医疗决策过程,这一点尚未得到满足。我们旨在开发和验证一种深度学习模型,以利用多模态 3D MRI 全脑时间序列,对与缺氧缺血性昏迷相关的脑损伤进行早期评估。

方法

这是一项概念验证、前瞻性队列研究,在法国图卢兹大学附属医院的重症监护病房进行,时间为 2018 年 3 月至 2020 年 5 月。所有患者在心脏骤停后至少 2 天(4±2 天)处于昏迷状态时进行扫描。在此期间,还招募了年龄匹配的健康志愿者并纳入研究。脑 MRI 定量分析包括基于感兴趣区域(楔前叶和后扣带回皮质)的“功能数据”,进行全脑功能连接分析,以及“结构数据”(灰质体积、T1 加权、各向异性分数和平均扩散系数)。设计了一个专门的 3D 卷积神经网络(CNN),通过将原始 MRI 指数作为输入,来区分意识状态(昏迷 vs. 对照组)。应用基于卷积滤波器研究的体素可视化方法来支持 CNN 结果。法国图卢兹大学教学医院伦理委员会(2018-A31)批准了该研究,并获得了所有参与者的知情同意。

结果

最终队列包括 29 例缺氧性昏迷患者和 34 名健康志愿者。使用 3D CNN 结合不同的 MR 指数,成功地将昏迷患者与对照组区分开来。基于后扣带皮层静息状态功能 MRI 的功能 MRI 数据获得了最佳准确性,在 10 次重复 10 折交叉验证的测试集中,准确率为 0.96(范围 0.94-0.98)。通过多数投票策略甚至可以获得更令人满意的结果,该策略能够补偿单个 MR 指数的错误。可视化图谱使我们能够确定每个 MRI 指数的最相关区域,特别是那些先前被描述为可能与意识出现有关的区域。有趣的是,对分类错误的患者进行的事后分析表明,他们可能与对照组具有一些共同的功能 MRI 特征,这表明有进一步改善的可能。

结论

从复杂的多模态神经影像学数据中自动识别具有临床意义的信号是一个重要的研究课题,可能会使严重脑损伤患者的神经预后判断发生根本性的范式转变。我们首次报告了使用 3D CNN 全脑结构和功能 MRI 数据成功区分缺氧性昏迷患者与对照组患者。临床试验编号:http://ClinicalTrials.gov(编号:NCT03482115)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67ad/9343298/4a9cbe441d5d/12028_2022_1525_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验