Kobilka Institute of Innovative Drug Discovery and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2201249119. doi: 10.1073/pnas.2201249119. Epub 2022 Jul 25.
The bacteria-derived formyl peptide fMet-Leu-Phe (fMLF) is a potent chemoattractant of phagocytes that induces chemotaxis at subnanomolar concentrations. At higher concentrations, fMLF inhibits chemotaxis while stimulating degranulation and superoxide production, allowing phagocytes to kill invading bacteria. How an agonist activates distinct cellular functions at different concentrations remains unclear. Using a bioluminescence resonance energy transfer-based FPR1 biosensor, we found that fMLF at subnanomolar and micromolar concentrations induced distinct conformational changes in FPR1, a Gi-coupled chemoattractant receptor that activates various phagocyte functions. Neutrophil-like HL-60 cells exposed to subnanomolar concentrations of fMLF polarized rapidly and migrated along a chemoattractant concentration gradient. These cells also developed an intracellular Ca concentration gradient. In comparison, high nanomolar and micromolar concentrations of fMLF triggered the PLC-β/diacyl glycerol/inositol trisphosphate pathway downstream of the heterotrimeric Gi proteins, leading to Ca mobilization from intracellular stores and Ca influx from extracellular milieu. A robust and uniform rise in cytoplasmic Ca level was required for degranulation and superoxide production but disrupted cytoplasmic Ca concentration gradient and inhibited chemotaxis. In addition, elevated ERK1/2 phosphorylation and β-arrestin2 membrane translocation were associated with diminished chemotaxis in the presence of fMLF above 1 nM. These findings suggest a mechanism for FPR1 agonist concentration-dependent signaling that leads to a switch from migration to bactericidal activities in phagocytes.
细菌衍生的甲酰肽 fMet-Leu-Phe(fMLF)是一种有效的吞噬细胞趋化因子,能在亚纳摩尔浓度下诱导趋化作用。在较高浓度下,fMLF 抑制趋化作用,同时刺激脱颗粒和超氧化物产生,使吞噬细胞能够杀死入侵的细菌。激动剂如何在不同浓度下激活不同的细胞功能仍不清楚。使用基于生物发光共振能量转移的 FPR1 生物传感器,我们发现 fMLF 在亚纳摩尔和微摩尔浓度下诱导 FPR1 发生不同的构象变化,FPR1 是一种 Gi 偶联趋化因子受体,可激活各种吞噬细胞功能。暴露于亚纳摩尔浓度 fMLF 的中性粒细胞样 HL-60 细胞迅速极化并沿着趋化因子浓度梯度迁移。这些细胞还形成了细胞内 Ca 浓度梯度。相比之下,高纳摩尔和微摩尔浓度的 fMLF 触发了异三聚体 Gi 蛋白下游的 PLC-β/二酰基甘油/肌醇三磷酸途径,导致细胞内储存的 Ca 动员和细胞外环境中的 Ca 内流。脱颗粒和超氧化物产生需要细胞质 Ca 水平的强劲和均匀上升,但会破坏细胞质 Ca 浓度梯度并抑制趋化作用。此外,在 fMLF 浓度高于 1 nM 时,ERK1/2 磷酸化和β-arrestin2 膜转位的增加与趋化作用的减弱有关。这些发现为 FPR1 激动剂浓度依赖性信号转导提供了一种机制,导致吞噬细胞从迁移到杀菌活性的转换。