Suppr超能文献

从室温水中准确预测成冰核。

Accurate prediction of ice nucleation from room temperature water.

机构信息

Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom.

Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2205347119. doi: 10.1073/pnas.2205347119. Epub 2022 Jul 25.

Abstract

Crystal nucleation is one of the most fundamental processes in the physical sciences and almost always occurs heterogeneously with the aid of a nucleating substrate. No example of nucleation is more ubiquitous and impactful than the formation of ice, vital to fields as diverse as geology, biology, aeronautics, and climate science. However, despite considerable effort, we still cannot predict a priori the efficacy of a nucleating agent. Here we utilize deep learning methods to accurately predict nucleation ability from images of room temperature liquid water-generated from molecular dynamics simulations-on a broad range of substrates. The resulting model, named IcePic, can rapidly and accurately infer nucleation ability, eliminating the requirement for either notoriously expensive simulations or direct experimental measurement. In an online poll, IcePic was found to significantly outperform humans in predicting the ice nucleating efficacy of materials. By analyzing the typical errors made by humans, as well as the application of reverse interpretation methods, physical insights into the role the water contact layer plays in ice nucleation have been obtained. Moving forward, we suggest that IcePic can be used as an easy, cheap, and rapid way to discern the nucleation ability of substrates, also with potential for learning other properties related to interfacial water.

摘要

晶体成核是物理科学中最基本的过程之一,几乎总是在成核衬底的帮助下异相发生。没有比冰的形成更普遍和更有影响力的成核实例了,冰对地质学、生物学、航空航天和气候科学等领域都至关重要。然而,尽管我们付出了相当大的努力,但仍然不能先验地预测成核剂的效果。在这里,我们利用深度学习方法从分子动力学模拟生成的室温液态水的图像中准确预测广泛衬底上的成核能力。由此产生的模型名为 IcePic,可以快速准确地推断成核能力,从而消除了对昂贵的模拟或直接实验测量的需求。在在线民意调查中,IcePic 在预测材料的冰成核效果方面明显优于人类。通过分析人类典型的错误以及反向解释方法的应用,我们获得了关于水接触层在冰成核中作用的物理见解。展望未来,我们建议可以将 IcePic 用作辨别衬底成核能力的简单、廉价和快速方法,也可以用于学习与界面水相关的其他性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbd1/9351478/37454a89cb15/pnas.2205347119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验