An Lu, Guo Zipeng, Li Zheng, Fu Yu, Hu Yong, Huang Yulong, Yao Fei, Zhou Chi, Ren Shenqiang
Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
Nat Commun. 2022 Jul 25;13(1):4309. doi: 10.1038/s41467-022-32027-3.
Tailoring thermal transport by structural parameters could result in mechanically fragile and brittle networks. An indispensable goal is to design hierarchical architecture materials that combine thermal and mechanical properties in a continuous and cohesive network. A promising strategy to create such a hierarchical network targets additive manufacturing of hybrid porous voxels at nanoscale. Here we describe the convergence of agile additive manufacturing of porous hybrid voxels to tailor hierarchically and mechanically tunable objects. In one strategy, the uniformly distributed porous silica voxels, which form the basis for the control of thermal transport, are non-covalently interfaced with polymeric networks, yielding hierarchic super-elastic architectures with thermal insulation properties. Another additive strategy for achieving mechanical strength involves the versatile orthogonal surface hybridization of porous silica voxels retains its low thermal conductivity of 19.1 mW mK, flexible compressive recovery strain (85%), and tailored mechanical strength from 71.6 kPa to 1.5 MPa. The printed lightweight high-fidelity objects promise thermal aging mitigation for lithium-ion batteries, providing a thermal management pathway using 3D printed silica objects.
通过结构参数来定制热传输可能会导致机械上脆弱且易碎的网络。一个不可或缺的目标是设计出在连续且凝聚的网络中兼具热性能和机械性能的分层结构材料。一种创建这种分层网络的有前景的策略是以纳米级混合多孔体素的增材制造为目标。在这里,我们描述了多孔混合体素的敏捷增材制造的融合,以定制分层且机械可调的物体。在一种策略中,构成热传输控制基础的均匀分布的多孔二氧化硅体素与聚合物网络非共价连接,产生具有隔热性能的分层超弹性结构。另一种实现机械强度的增材策略涉及多孔二氧化硅体素的通用正交表面杂交,其保留了19.1 mW mK的低导热率、85%的灵活压缩恢复应变以及从71.6 kPa到1.5 MPa的定制机械强度。打印出的轻质高保真物体有望减轻锂离子电池的热老化,提供一种使用3D打印二氧化硅物体的热管理途径。