Suppr超能文献

将符号回归与 Cox 比例风险模型相结合可以提高心力衰竭死亡预测的准确性。

Combining symbolic regression with the Cox proportional hazards model improves prediction of heart failure deaths.

机构信息

Abzu, Orient Plads 1, 2150, Copenhagen, Denmark.

出版信息

BMC Med Inform Decis Mak. 2022 Jul 25;22(1):196. doi: 10.1186/s12911-022-01943-1.

Abstract

BACKGROUND

Heart failure is a clinical syndrome characterised by a reduced ability of the heart to pump blood. Patients with heart failure have a high mortality rate, and physicians need reliable prognostic predictions to make informed decisions about the appropriate application of devices, transplantation, medications, and palliative care. In this study, we demonstrate that combining symbolic regression with the Cox proportional hazards model improves the ability to predict death due to heart failure compared to using the Cox proportional hazards model alone.

METHODS

We used a newly invented symbolic regression method called the QLattice to analyse a data set of medical records for 299 Pakistani patients diagnosed with heart failure. The QLattice identified non-linear mathematical transformations of the available covariates, which we then used in a Cox model to predict survival.

RESULTS

An exponential function of age, the inverse of ejection fraction, and the inverse of serum creatinine were identified as the best risk factors for predicting heart failure deaths. A Cox model fitted on these transformed covariates had improved predictive performance compared with a Cox model on the same covariates without mathematical transformations.

CONCLUSION

Symbolic regression is a way to find transformations of covariates from patients' medical records which can improve the performance of survival regression models. At the same time, these simple functions are intuitive and easy to apply in clinical settings. The direct interpretability of the simple forms may help researchers gain new insights into the actual causal pathways leading to deaths.

摘要

背景

心力衰竭是一种以心脏泵血能力降低为特征的临床综合征。心力衰竭患者的死亡率很高,医生需要可靠的预后预测,以便就设备、移植、药物和姑息治疗的适当应用做出明智的决策。在这项研究中,我们证明了与单独使用 Cox 比例风险模型相比,结合符号回归和 Cox 比例风险模型可以提高预测心力衰竭死亡的能力。

方法

我们使用了一种新发明的符号回归方法,称为 QLattice,来分析 299 名巴基斯坦心力衰竭患者的病历数据集。QLattice 确定了可用协变量的非线性数学变换,然后我们在 Cox 模型中使用这些变换来预测生存。

结果

年龄的指数函数、射血分数的倒数和血清肌酐的倒数被确定为预测心力衰竭死亡的最佳风险因素。与没有数学变换的 Cox 模型相比,在这些变换后的协变量上拟合的 Cox 模型具有更好的预测性能。

结论

符号回归是一种从患者病历中寻找协变量变换的方法,可以提高生存回归模型的性能。同时,这些简单的函数直观且易于在临床环境中应用。简单形式的直接可解释性可能有助于研究人员深入了解导致死亡的实际因果途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验