Suppr超能文献

一种多尺度脑网络模型将阿尔茨海默病引起的神经元活动亢进与大尺度振荡减慢联系起来。

A multiscale brain network model links Alzheimer's disease-mediated neuronal hyperactivity to large-scale oscillatory slowing.

机构信息

Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.

Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.

出版信息

Alzheimers Res Ther. 2022 Jul 25;14(1):101. doi: 10.1186/s13195-022-01041-4.

Abstract

BACKGROUND

Neuronal hyperexcitability and inhibitory interneuron dysfunction are frequently observed in preclinical animal models of Alzheimer's disease (AD). This study investigates whether these microscale abnormalities explain characteristic large-scale magnetoencephalography (MEG) activity in human early-stage AD patients.

METHODS

To simulate spontaneous electrophysiological activity, we used a whole-brain computational network model comprised of 78 neural masses coupled according to human structural brain topology. We modified relevant model parameters to simulate six literature-based cellular scenarios of AD and compare them to one healthy and six contrast (non-AD-like) scenarios. The parameters include excitability, postsynaptic potentials, and coupling strength of excitatory and inhibitory neuronal populations. Whole-brain spike density and spectral power analyses of the simulated data reveal mechanisms of neuronal hyperactivity that lead to oscillatory changes similar to those observed in MEG data of 18 human prodromal AD patients compared to 18 age-matched subjects with subjective cognitive decline.

RESULTS

All but one of the AD-like scenarios showed higher spike density levels, and all but one of these scenarios had a lower peak frequency, higher spectral power in slower (theta, 4-8Hz) frequencies, and greater total power. Non-AD-like scenarios showed opposite patterns mainly, including reduced spike density and faster oscillatory activity. Human AD patients showed oscillatory slowing (i.e., higher relative power in the theta band mainly), a trend for lower peak frequency and higher total power compared to controls. Combining model and human data, the findings indicate that neuronal hyperactivity can lead to oscillatory slowing, likely due to hyperexcitation (by hyperexcitability of pyramidal neurons or greater long-range excitatory coupling) and/or disinhibition (by reduced excitability of inhibitory interneurons or weaker local inhibitory coupling strength) in early AD.

CONCLUSIONS

Using a computational brain network model, we link findings from different scales and models and support the hypothesis of early-stage neuronal hyperactivity underlying E/I imbalance and whole-brain network dysfunction in prodromal AD.

摘要

背景

在阿尔茨海默病(AD)的临床前动物模型中,经常观察到神经元兴奋和抑制性中间神经元功能障碍。本研究旨在探讨这些微观异常是否可以解释人类早期 AD 患者的特征性大尺度脑磁图(MEG)活动。

方法

为了模拟自发的电生理活动,我们使用了一个全脑计算网络模型,该模型由 78 个神经团块组成,根据人类结构脑拓扑结构进行耦合。我们修改了相关模型参数,以模拟六种基于文献的 AD 细胞场景,并将其与一种健康和六种对照(非 AD 样)场景进行比较。这些参数包括兴奋性、突触后电位以及兴奋性和抑制性神经元群体的耦合强度。对模拟数据的全脑尖峰密度和频谱功率分析揭示了导致类似 MEG 数据中观察到的振荡变化的神经元过度活跃机制,与 18 名有前驱期 AD 的人类患者和 18 名年龄匹配的有主观认知下降的受试者相比。

结果

除一种情况外,所有 AD 样情况的尖峰密度水平均较高,除一种情况外,这些情况的峰值频率均较低,较慢(θ,4-8Hz)频率的频谱功率较高,总功率较大。非 AD 样情况主要表现出相反的模式,包括尖峰密度降低和更快的振荡活动。与对照组相比,人类 AD 患者表现出振荡减慢(即主要在θ频段具有相对较高的功率),峰值频率降低和总功率增加的趋势。结合模型和人类数据,研究结果表明,神经元过度活跃可能导致振荡减慢,这可能是由于早期 AD 中兴奋性神经元过度兴奋(通过锥体神经元的过度兴奋或更强的长程兴奋性耦合)和/或抑制性神经元抑制减弱(通过抑制性中间神经元的兴奋性降低或局部抑制性耦合强度减弱)所致。

结论

使用计算大脑网络模型,我们将来自不同尺度和模型的发现联系起来,并支持在前驱期 AD 中,早期神经元过度活跃导致 E/I 失衡和全脑网络功能障碍的假说。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b16/9310500/a126744659b7/13195_2022_1041_Fig1_HTML.jpg

相似文献

3
Altering neuronal excitability to preserve network connectivity in a computational model of Alzheimer's disease.
PLoS Comput Biol. 2017 Sep 22;13(9):e1005707. doi: 10.1371/journal.pcbi.1005707. eCollection 2017 Sep.
6
Modelling the contributions to hyperexcitability in a mouse model of Alzheimer's disease.
J Physiol. 2023 Aug;601(15):3403-3437. doi: 10.1113/JP283401. Epub 2023 Feb 25.
8
Activity dependent degeneration explains hub vulnerability in Alzheimer's disease.
PLoS Comput Biol. 2012;8(8):e1002582. doi: 10.1371/journal.pcbi.1002582. Epub 2012 Aug 16.
10
Alpha rhythm slowing in a modified thalamo-cortico-thalamic model related with Alzheimer's disease.
PLoS One. 2020 Mar 12;15(3):e0229950. doi: 10.1371/journal.pone.0229950. eCollection 2020.

引用本文的文献

1
Brain Segregation and Integration Relate to Word-Finding Abilities in Older and Younger Adults.
Neurobiol Lang (Camb). 2025 Jul 15;6. doi: 10.1162/nol.a.7. eCollection 2025.
2
Immunoassay for pyruvate kinase M1/2 as an Alzheimer's biomarker in CSF.
Open Life Sci. 2025 Jul 7;20(1):20251101. doi: 10.1515/biol-2025-1101. eCollection 2025.
3
Digital twins and non-invasive recordings enable early diagnosis of Alzheimer's disease.
Alzheimers Res Ther. 2025 May 31;17(1):125. doi: 10.1186/s13195-025-01765-z.
4
Exploring the neuromagnetic signatures of cognitive decline from mild cognitive impairment to Alzheimer's disease dementia.
EBioMedicine. 2025 Apr;114:105659. doi: 10.1016/j.ebiom.2025.105659. Epub 2025 Mar 27.
5
Longitudinal excitation-inhibition balance altered by sex and APOE-ε4.
Commun Biol. 2025 Mar 25;8(1):488. doi: 10.1038/s42003-025-07876-5.
6
Multiscale brain modeling: bridging microscopic and macroscopic brain dynamics for clinical and technological applications.
Front Cell Neurosci. 2025 Feb 19;19:1537462. doi: 10.3389/fncel.2025.1537462. eCollection 2025.
7
Alzheimer's disease: A case study involving EEG-based fE/I ratio and pTau-181 protein analysis through nasal administration of .
J Alzheimers Dis Rep. 2024 Dec 23;8(1):1763-1774. doi: 10.1177/25424823241306771. eCollection 2024.
9
The Bidirectional Relationship Between Epilepsy and Alzheimer's Disease.
Curr Neurol Neurosci Rep. 2025 Feb 8;25(1):18. doi: 10.1007/s11910-025-01404-y.

本文引用的文献

1
Spatially resolved neural slowing predicts impairment and amyloid burden in Alzheimer's disease.
Brain. 2022 Jun 30;145(6):2177-2189. doi: 10.1093/brain/awab430.
2
Routine magnetoencephalography in memory clinic patients: A machine learning approach.
Alzheimers Dement (Amst). 2021 Sep 18;13(1):e12227. doi: 10.1002/dad2.12227. eCollection 2021.
3
Subclinical epileptiform activity accelerates the progression of Alzheimer's disease: A long-term EEG study.
Clin Neurophysiol. 2021 Aug;132(8):1982-1989. doi: 10.1016/j.clinph.2021.03.050. Epub 2021 May 8.
4
Neuronal Hyperexcitability in APPSWE/PS1dE9 Mouse Models of Alzheimer's Disease.
J Alzheimers Dis. 2021;81(3):855-869. doi: 10.3233/JAD-201540.
5
Computational Models in Electroencephalography.
Brain Topogr. 2022 Jan;35(1):142-161. doi: 10.1007/s10548-021-00828-2. Epub 2021 Mar 29.
6
7
Neuronal Oscillations on Evolving Networks: Dynamics, Damage, Degradation, Decline, Dementia, and Death.
Phys Rev Lett. 2020 Sep 18;125(12):128102. doi: 10.1103/PhysRevLett.125.128102.
8
Chemogenetic attenuation of neuronal activity in the entorhinal cortex reduces Aβ and tau pathology in the hippocampus.
PLoS Biol. 2020 Aug 21;18(8):e3000851. doi: 10.1371/journal.pbio.3000851. eCollection 2020 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验