Suppr超能文献

进化网络中的神经元振荡:动力学、损伤、退化、衰退、痴呆和死亡。

Neuronal Oscillations on Evolving Networks: Dynamics, Damage, Degradation, Decline, Dementia, and Death.

机构信息

Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom.

Living Matter Laboratory, Stanford University, Stanford, California 94305, USA.

出版信息

Phys Rev Lett. 2020 Sep 18;125(12):128102. doi: 10.1103/PhysRevLett.125.128102.

Abstract

Neurodegenerative diseases, such as Alzheimer's or Parkinson's disease, show characteristic degradation of structural brain networks. This degradation eventually leads to changes in the network dynamics and degradation of cognitive functions. Here, we model the progression in terms of coupled physical processes: The accumulation of toxic proteins, given by a nonlinear reaction-diffusion transport process, yields an evolving brain connectome characterized by weighted edges on which a neuronal-mass model evolves. The progression of the brain functions can be tested by simulating the resting-state activity on the evolving brain network. We show that while the evolution of edge weights plays a minor role in the overall progression of the disease, dynamic biomarkers predict a transition over a period of 10 years associated with strong cognitive decline.

摘要

神经退行性疾病,如阿尔茨海默病或帕金森病,表现出特征性的结构性脑网络退化。这种退化最终导致网络动力学的变化和认知功能的退化。在这里,我们以耦合的物理过程来模拟进展:有毒蛋白的积累,由非线性反应扩散输运过程给出,产生了一个以加权边为特征的进化脑连接组,在该边上面演化着神经元质量模型。通过模拟进化中的脑网络的静息状态活动,可以测试脑功能的进展。我们表明,虽然边缘权重的演变在疾病的整体进展中作用较小,但动态生物标志物可以预测与严重认知能力下降相关的 10 年过渡期。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验