Athanasiou Modestos, Manoli Andreas, Papagiorgis Paris, Georgiou Kyriacos, Berezovska Yuliia, Othonos Andreas, Bodnarchuk Maryna I, Kovalenko Maksym V, Itskos Grigorios
Experimental Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, Nicosia 1678, Cyprus.
Department of Physics, Laboratory of Ultrafast Science, University of Cyprus, Nicosia 1678, Cyprus.
ACS Photonics. 2022 Jul 20;9(7):2385-2397. doi: 10.1021/acsphotonics.2c00426. Epub 2022 Jun 24.
Lead halide perovskite nanocrystals (NCs) are highly suitable active media for solution-processed lasers in the visible spectrum, owing to the wide tunability of their emission from blue to red via facile ion-exchange reactions. Their outstanding optical gain properties and the suppressed nonradiative recombination losses stem from their defect-tolerant nature. In this work, we demonstrate flexible waveguides combining the transparent, bioplastic, polymer cellulose acetate with green CsPbBr or red-emitting CsPb(Br,I) NCs in simple solution-processed architectures based on polymer-NC multilayers deposited on polymer micro-slabs. Experiments and simulations indicate that the employment of the thin, free-standing membranes results in confined electrical fields, enhanced by 2 orders of magnitude compared to identical multilayer stacks deposited on conventional, rigid quartz substrates. As a result, the polymer structures exhibit improved amplified emission characteristics under nanosecond excitation, with amplified spontaneous emission (ASE) thresholds down to ∼95 μJ cm and ∼70 μJ cm and high net modal gain up to ∼450 and ∼630 cm in the green and red parts of the spectrum, respectively. The optimized gain properties are accompanied by a notable improvement of the ASE operational stability due to the low thermal resistance of the substrate-less membranes and the intimate thermal contact between the polymer and the NCs. Their application potential is further highlighted by the membrane's ability to sustain dual-color ASE in the green and red parts of the spectrum through excitation by a single UV source, activate underwater stimulated emission, and operate as efficient white light downconverters of commercial blue LEDs, producing high-quality white light emission, 115% of the NTSC color gamut.
卤化铅钙钛矿纳米晶体(NCs)是非常适合用于可见光谱中溶液处理激光器的活性介质,这是由于通过简便的离子交换反应,其发射光可从蓝光到红光实现广泛的可调谐性。它们出色的光学增益特性以及抑制的非辐射复合损耗源于其容错性质。在这项工作中,我们展示了一种柔性波导,它将透明的生物塑料聚合物醋酸纤维素与绿色的CsPbBr或红色发射的CsPb(Br,I) NCs相结合,采用基于沉积在聚合物微平板上的聚合物-NC多层膜的简单溶液处理架构。实验和模拟表明,使用薄的独立膜会产生受限电场,与沉积在传统刚性石英基板上的相同多层堆叠相比,电场增强了2个数量级。结果,聚合物结构在纳秒激发下表现出改善的放大发射特性,绿色和红色光谱部分的放大自发发射(ASE)阈值分别低至约95 μJ/cm²和约70 μJ/cm²,净模态增益高达约450 cm⁻¹和约630 cm⁻¹。由于无基板膜的低热阻以及聚合物与NCs之间紧密的热接触,优化后的增益特性伴随着ASE运行稳定性的显著提高。通过单个紫外光源激发,该膜能够在光谱的绿色和红色部分维持双色ASE、激活水下受激发射,并作为商用蓝色LED的高效白光下变频器,产生高质量的白光发射,达到NTSC色域标准的115%,这进一步突出了它们的应用潜力。